A New Protection Strategy Based on Negative Sequence Current Coordinated Control on the Generator Extremity
When the single-phase reclosing of the high-voltage circuit, there will be tremendous negative sequence current generation. The connection of inverter-type new energy sources may increase the negative sequence current of the power system. The risks will be greatly increased if a large negative seque...
Gespeichert in:
Veröffentlicht in: | IEEE access 2020, Vol.8, p.135329-135338 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | When the single-phase reclosing of the high-voltage circuit, there will be tremendous negative sequence current generation. The connection of inverter-type new energy sources may increase the negative sequence current of the power system. The risks will be greatly increased if a large negative sequence current invades the generator, and it will cause the general stator damaged and offline. Based on the chain STATCOM compensation, a new strategy of negative sequence current coordinated control protection on the generator extremity is put forward. This strategy can predict the operation time of inverse time negative sequence current protection by monitoring the negative sequence current on the generator extremity. Once it is determined that the negative sequence current has an effect on the power system, according to the relationship between the STATCOM capacity and the magnitude of negative sequence current, two schemes of full compensation and incomplete compensation are proposed. The negative sequence current output by STATCOM suppresses the magnitude of the negative sequence current invading the generator. It eliminates or prolongs the operation time of the negative sequence current protection and gets more time for power system security and stability control. Finally, the simulation results verify the correctness and feasibility of the proposed strategy. |
---|---|
ISSN: | 2169-3536 2169-3536 |
DOI: | 10.1109/ACCESS.2020.3011519 |