Nonlinear measures: a new approach to exponential stability analysis for Hopfield-type neural networks
In this paper, a new concept called nonlinear measure is introduced to quantify stability of nonlinear systems in the way similar to the matrix measure for stability of linear systems. Based on the new concept, a novel approach for stability analysis of neural networks is developed. With this approa...
Gespeichert in:
Veröffentlicht in: | IEEE transaction on neural networks and learning systems 2001-03, Vol.12 (2), p.360-370 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, a new concept called nonlinear measure is introduced to quantify stability of nonlinear systems in the way similar to the matrix measure for stability of linear systems. Based on the new concept, a novel approach for stability analysis of neural networks is developed. With this approach, a series of new sufficient conditions for global and local exponential stability of Hopfield type neural networks is presented, which generalizes those existing results. By means of the introduced nonlinear measure, the exponential convergence rate of the neural networks to stable equilibrium point is estimated, and, for local stability, the attraction region of the stable equilibrium point is characterized. The developed approach can be generalized to stability analysis of other general nonlinear systems. |
---|---|
ISSN: | 1045-9227 2162-237X 1941-0093 2162-2388 |
DOI: | 10.1109/72.914530 |