Two-Stream RGB-D Human Detection Algorithm Based on RFB Network
In order to effectively combine RGB image features with depth image features for human detection, this paper proposes a two-stream RGB-D human detection algorithm based on RFB network. The proposed algorithm mainly contains three parts: RGB-stream, Depth-stream and Channel Weight Fusion (CWF) strate...
Gespeichert in:
Veröffentlicht in: | IEEE access 2020, Vol.8, p.123175-123181 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In order to effectively combine RGB image features with depth image features for human detection, this paper proposes a two-stream RGB-D human detection algorithm based on RFB network. The proposed algorithm mainly contains three parts: RGB-stream, Depth-stream and Channel Weight Fusion (CWF) strategy. (1) The RGB-stream extracts RGB image features using RFB-Net as the backbone network. (2) By analyzing the results of depth features visualization, we build the Depth-stream, which can effectively extract the depth image features. (3) The improved CWF strategy can enhance the effectiveness of important channels in RGB-D fusion features and improve the capability of the network expression. The experimental results show that the proposed algorithm has a significant improvement compared with other algorithms on two common datasets. |
---|---|
ISSN: | 2169-3536 2169-3536 |
DOI: | 10.1109/ACCESS.2020.3007611 |