Visible Light Positioning Using Bayesian Filters

Visible light positioning has the potential to be a cost-effective technology for accurate indoor positioning. However, existing approaches often require large amounts of incoming data, usually in the form of high resolution images or dense lighting distributions. Additionally, a line of sight betwe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of lightwave technology 2020-11, Vol.38 (21), p.5925-5936
Hauptverfasser: Amsters, Robin, Holm, Dimiter, Joly, Joren, Demeester, Eric, Stevens, Nobby, Slaets, Peter
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Visible light positioning has the potential to be a cost-effective technology for accurate indoor positioning. However, existing approaches often require large amounts of incoming data, usually in the form of high resolution images or dense lighting distributions. Additionally, a line of sight between transmitter and receiver is generally required at all times. In this work, we present a positioning approach that combines measurements from a camera, encoders and a gyroscope. We compare multiple algorithms for fusing these data, namely an extended Kalman filter, a particle filter and a hybrid approach. The end result is a system that provides location estimates even with sparse lighting distributions and temporary outages, yet achieves an average accuracy of 2 to 4 cm. Even in the 95th percentile of the cumulative error distribution, accuracy can be as low as 2 cm and is often lower than 10 cm. Moreover, due to the use of a low-resolution camera (640x480 pixels) and efficient fusion algorithms, the latency is relatively low on a standard laptop (between 5.6 and 21 milliseconds). Even on a low-cost embedded board, latency generally does not exceed 100 milliseconds. We validate our approach experimentally and show that it is robust under a wide range of illumination conditions.
ISSN:0733-8724
1558-2213
DOI:10.1109/JLT.2020.3006618