Investigation on Ku-Band Dual-State Gyro-TWT
This article presents the development of a dual-state Ku -band gyrotron traveling-wave tube (gyro-TWT) dual-state curved-profile magnetic injection gun (MIG) generating high-quality electron beams, in which the pitch factor is up to 1.2 and 1.35 for the pulse wave (PW) state and the continuous wave...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on plasma science 2020-07, Vol.48 (7), p.2366-2371 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This article presents the development of a dual-state Ku -band gyrotron traveling-wave tube (gyro-TWT) dual-state curved-profile magnetic injection gun (MIG) generating high-quality electron beams, in which the pitch factor is up to 1.2 and 1.35 for the pulse wave (PW) state and the continuous wave (CW) state, separately. A multiobjective genetic algorithm (MOGA) is applied in the profile optimization. Meanwhile, the parametric sensitivity is also discussed in detail. A periodic dielectric-loaded interaction circuit is adopted to suppress oscillations. Furthermore, thermal analyses of the interaction circuit under different duty cycles are also elaborated. The interaction circuit is analyzed in accordance with the proposed nonlinear self-consistent theory and particle-in-cell (PIC) codes. The results of hot experiments show that the dual-state tube obtains the output power of 150/30 kW corresponding to a saturated gain of 40/41 dB and the maximum efficiency of 25%/21% within the bandwidth of 2.0/1.1 GHz for the PW/CW state, respectively. |
---|---|
ISSN: | 0093-3813 1939-9375 |
DOI: | 10.1109/TPS.2020.3001199 |