Investigation on Ku-Band Dual-State Gyro-TWT

This article presents the development of a dual-state Ku -band gyrotron traveling-wave tube (gyro-TWT) dual-state curved-profile magnetic injection gun (MIG) generating high-quality electron beams, in which the pitch factor is up to 1.2 and 1.35 for the pulse wave (PW) state and the continuous wave...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on plasma science 2020-07, Vol.48 (7), p.2366-2371
Hauptverfasser: Li, Hao, Wang, Jianxun, Yao, Yelei, Luo, Yong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This article presents the development of a dual-state Ku -band gyrotron traveling-wave tube (gyro-TWT) dual-state curved-profile magnetic injection gun (MIG) generating high-quality electron beams, in which the pitch factor is up to 1.2 and 1.35 for the pulse wave (PW) state and the continuous wave (CW) state, separately. A multiobjective genetic algorithm (MOGA) is applied in the profile optimization. Meanwhile, the parametric sensitivity is also discussed in detail. A periodic dielectric-loaded interaction circuit is adopted to suppress oscillations. Furthermore, thermal analyses of the interaction circuit under different duty cycles are also elaborated. The interaction circuit is analyzed in accordance with the proposed nonlinear self-consistent theory and particle-in-cell (PIC) codes. The results of hot experiments show that the dual-state tube obtains the output power of 150/30 kW corresponding to a saturated gain of 40/41 dB and the maximum efficiency of 25%/21% within the bandwidth of 2.0/1.1 GHz for the PW/CW state, respectively.
ISSN:0093-3813
1939-9375
DOI:10.1109/TPS.2020.3001199