Enhanced Computation Performance of Photovoltaic Models for Power Hardware-in-the-Loop Simulation

For power hardware-in-the-loop (PHIL) simulation, a real-time simulator has to complete the target model calculations in a real-time manner without overrun errors. However, a photovoltaic (PV) simulation model contains a nonlinear equation that demands a numerical method with long computation time....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on industrial electronics (1982) 2021-08, Vol.68 (8), p.6952-6961
Hauptverfasser: Kim, Mina, Kwak, Sang-Kyu, Kim, Katherine A., Jung, Jee-Hoon
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:For power hardware-in-the-loop (PHIL) simulation, a real-time simulator has to complete the target model calculations in a real-time manner without overrun errors. However, a photovoltaic (PV) simulation model contains a nonlinear equation that demands a numerical method with long computation time. Therefore, the complexity and operating condition of the target PV model are limited to reduce its computation burden. Besides, it sacrifices the model accuracy and limits the simulation scenario of the PHIL simulation. In this article, the PV simulation model employing an effective initial value selection method is proposed to enhance the real-time simulation performance for the PV PHIL simulation. The proposed initial value selection method can reduce the number of iterations of the numerical method so that it can drastically reduce the computation time of the real-time simulation. Therefore, the PHIL simulation model can increase it complexity with a fixed time step. Moreover, the PV model can be scaled up with various operating conditions, which can increase the PHIL simulation accuracy. The accuracy and the performance of the proposed PV model are evaluated by the PHIL simulation results. The maximum number of the PV models for the target PHIL simulation is also discussed.
ISSN:0278-0046
1557-9948
DOI:10.1109/TIE.2020.3001813