Printed Carbon Nanotubes-Based Flexible Resistive Humidity Sensor

A resistive flexible humidity sensor based on multi-walled carbon nanotubes (MWCNTs) was designed and fabricated. Screen and gravure printing processes were used for monolithically fabricating the humidity sensor containing interdigitated electrodes (IDE), a sensing layer and a meandering conductive...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE sensors journal 2020-11, Vol.20 (21), p.12592-12601
Hauptverfasser: Zhang, Xingzhe, Maddipatla, Dinesh, Bose, Arnesh K., Hajian, Sajjad, Narakathu, Binu Baby, Williams, John D., Mitchell, Michael F., Atashbar, Massood Z.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 12601
container_issue 21
container_start_page 12592
container_title IEEE sensors journal
container_volume 20
creator Zhang, Xingzhe
Maddipatla, Dinesh
Bose, Arnesh K.
Hajian, Sajjad
Narakathu, Binu Baby
Williams, John D.
Mitchell, Michael F.
Atashbar, Massood Z.
description A resistive flexible humidity sensor based on multi-walled carbon nanotubes (MWCNTs) was designed and fabricated. Screen and gravure printing processes were used for monolithically fabricating the humidity sensor containing interdigitated electrodes (IDE), a sensing layer and a meandering conductive heater. An average thickness and surface roughness of 0.99~\mu \text{m} and 0.23~\mu \text{m} , respectively, was registered for the printed MWCNTs sensing layer. The capability of the printed sensor, with heater, was investigated by subjecting it to relative humidity (RH) ranging from 10% to 90%. The response demonstrated an overall resistance change of 55% when the sensor was subjected to 90% RH, when compared to 10% RH. A maximum hysteresis of 5.1%, at 70% RH, was calculated for the resistive response of the sensor. The printed sensors can be bend with radius of curvature of 1.5 inch with literally no effect.
doi_str_mv 10.1109/JSEN.2020.3002951
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_9118908</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9118908</ieee_id><sourcerecordid>2448441802</sourcerecordid><originalsourceid>FETCH-LOGICAL-c402t-e62d916026f3b54f7f89fb53fd940ac5f7b5269afce5f2bacdc5eea7a61d91263</originalsourceid><addsrcrecordid>eNo9kNFKwzAUhoMoOKcPIN4UvG49SZOmuZxjc8qY4hS8C2l7AhlbO5NW3NvbsuHV-Tl8_znwEXJLIaEU1MPLerZKGDBIUgCmBD0jIypEHlPJ8_MhpxDzVH5dkqsQNgBUSSFHZPLmXd1iFU2NL5o6Wpm6absCQ_xoQr-eb_HXFVuM3jG40LofjBbdzlWuPURrrEPjr8mFNduAN6c5Jp_z2cd0ES9fn56nk2VccmBtjBmrFM2AZTYtBLfS5soWIrWV4mBKYWUhWKaMLVFYVpiyKgWikSajfY9l6ZjcH-_uffPdYWj1pul83b_UjPOcc5oD6yl6pErfhODR6r13O-MPmoIeTOnBlB5M6ZOpvnN37DhE_OcVpbmCPP0DjrVk4A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2448441802</pqid></control><display><type>article</type><title>Printed Carbon Nanotubes-Based Flexible Resistive Humidity Sensor</title><source>IEEE Electronic Library (IEL)</source><creator>Zhang, Xingzhe ; Maddipatla, Dinesh ; Bose, Arnesh K. ; Hajian, Sajjad ; Narakathu, Binu Baby ; Williams, John D. ; Mitchell, Michael F. ; Atashbar, Massood Z.</creator><creatorcontrib>Zhang, Xingzhe ; Maddipatla, Dinesh ; Bose, Arnesh K. ; Hajian, Sajjad ; Narakathu, Binu Baby ; Williams, John D. ; Mitchell, Michael F. ; Atashbar, Massood Z.</creatorcontrib><description><![CDATA[A resistive flexible humidity sensor based on multi-walled carbon nanotubes (MWCNTs) was designed and fabricated. Screen and gravure printing processes were used for monolithically fabricating the humidity sensor containing interdigitated electrodes (IDE), a sensing layer and a meandering conductive heater. An average thickness and surface roughness of <inline-formula> <tex-math notation="LaTeX">0.99~\mu \text{m} </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">0.23~\mu \text{m} </tex-math></inline-formula>, respectively, was registered for the printed MWCNTs sensing layer. The capability of the printed sensor, with heater, was investigated by subjecting it to relative humidity (RH) ranging from 10% to 90%. The response demonstrated an overall resistance change of 55% when the sensor was subjected to 90% RH, when compared to 10% RH. A maximum hysteresis of 5.1%, at 70% RH, was calculated for the resistive response of the sensor. The printed sensors can be bend with radius of curvature of 1.5 inch with literally no effect.]]></description><identifier>ISSN: 1530-437X</identifier><identifier>EISSN: 1558-1748</identifier><identifier>DOI: 10.1109/JSEN.2020.3002951</identifier><identifier>CODEN: ISJEAZ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Bend radius ; Capacitive sensors ; Gravure ; gravure printing ; heater ; Heating systems ; Humidity ; hysteresis ; Ink ; Multi wall carbon nanotubes ; multi-walled carbon nanotubes ; Radius of curvature ; Relative humidity ; Resistive humidity sensor ; screen printing ; Sensor phenomena and characterization ; Sensors ; Substrates ; Surface roughness</subject><ispartof>IEEE sensors journal, 2020-11, Vol.20 (21), p.12592-12601</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c402t-e62d916026f3b54f7f89fb53fd940ac5f7b5269afce5f2bacdc5eea7a61d91263</citedby><cites>FETCH-LOGICAL-c402t-e62d916026f3b54f7f89fb53fd940ac5f7b5269afce5f2bacdc5eea7a61d91263</cites><orcidid>0000-0003-2288-8779 ; 0000-0002-2995-8066 ; 0000-0003-2981-6321 ; 0000-0002-2841-741X ; 0000-0003-0618-5301 ; 0000-0002-7530-0038 ; 0000-0003-2225-7758</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9118908$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9118908$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhang, Xingzhe</creatorcontrib><creatorcontrib>Maddipatla, Dinesh</creatorcontrib><creatorcontrib>Bose, Arnesh K.</creatorcontrib><creatorcontrib>Hajian, Sajjad</creatorcontrib><creatorcontrib>Narakathu, Binu Baby</creatorcontrib><creatorcontrib>Williams, John D.</creatorcontrib><creatorcontrib>Mitchell, Michael F.</creatorcontrib><creatorcontrib>Atashbar, Massood Z.</creatorcontrib><title>Printed Carbon Nanotubes-Based Flexible Resistive Humidity Sensor</title><title>IEEE sensors journal</title><addtitle>JSEN</addtitle><description><![CDATA[A resistive flexible humidity sensor based on multi-walled carbon nanotubes (MWCNTs) was designed and fabricated. Screen and gravure printing processes were used for monolithically fabricating the humidity sensor containing interdigitated electrodes (IDE), a sensing layer and a meandering conductive heater. An average thickness and surface roughness of <inline-formula> <tex-math notation="LaTeX">0.99~\mu \text{m} </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">0.23~\mu \text{m} </tex-math></inline-formula>, respectively, was registered for the printed MWCNTs sensing layer. The capability of the printed sensor, with heater, was investigated by subjecting it to relative humidity (RH) ranging from 10% to 90%. The response demonstrated an overall resistance change of 55% when the sensor was subjected to 90% RH, when compared to 10% RH. A maximum hysteresis of 5.1%, at 70% RH, was calculated for the resistive response of the sensor. The printed sensors can be bend with radius of curvature of 1.5 inch with literally no effect.]]></description><subject>Bend radius</subject><subject>Capacitive sensors</subject><subject>Gravure</subject><subject>gravure printing</subject><subject>heater</subject><subject>Heating systems</subject><subject>Humidity</subject><subject>hysteresis</subject><subject>Ink</subject><subject>Multi wall carbon nanotubes</subject><subject>multi-walled carbon nanotubes</subject><subject>Radius of curvature</subject><subject>Relative humidity</subject><subject>Resistive humidity sensor</subject><subject>screen printing</subject><subject>Sensor phenomena and characterization</subject><subject>Sensors</subject><subject>Substrates</subject><subject>Surface roughness</subject><issn>1530-437X</issn><issn>1558-1748</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kNFKwzAUhoMoOKcPIN4UvG49SZOmuZxjc8qY4hS8C2l7AhlbO5NW3NvbsuHV-Tl8_znwEXJLIaEU1MPLerZKGDBIUgCmBD0jIypEHlPJ8_MhpxDzVH5dkqsQNgBUSSFHZPLmXd1iFU2NL5o6Wpm6absCQ_xoQr-eb_HXFVuM3jG40LofjBbdzlWuPURrrEPjr8mFNduAN6c5Jp_z2cd0ES9fn56nk2VccmBtjBmrFM2AZTYtBLfS5soWIrWV4mBKYWUhWKaMLVFYVpiyKgWikSajfY9l6ZjcH-_uffPdYWj1pul83b_UjPOcc5oD6yl6pErfhODR6r13O-MPmoIeTOnBlB5M6ZOpvnN37DhE_OcVpbmCPP0DjrVk4A</recordid><startdate>20201101</startdate><enddate>20201101</enddate><creator>Zhang, Xingzhe</creator><creator>Maddipatla, Dinesh</creator><creator>Bose, Arnesh K.</creator><creator>Hajian, Sajjad</creator><creator>Narakathu, Binu Baby</creator><creator>Williams, John D.</creator><creator>Mitchell, Michael F.</creator><creator>Atashbar, Massood Z.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-2288-8779</orcidid><orcidid>https://orcid.org/0000-0002-2995-8066</orcidid><orcidid>https://orcid.org/0000-0003-2981-6321</orcidid><orcidid>https://orcid.org/0000-0002-2841-741X</orcidid><orcidid>https://orcid.org/0000-0003-0618-5301</orcidid><orcidid>https://orcid.org/0000-0002-7530-0038</orcidid><orcidid>https://orcid.org/0000-0003-2225-7758</orcidid></search><sort><creationdate>20201101</creationdate><title>Printed Carbon Nanotubes-Based Flexible Resistive Humidity Sensor</title><author>Zhang, Xingzhe ; Maddipatla, Dinesh ; Bose, Arnesh K. ; Hajian, Sajjad ; Narakathu, Binu Baby ; Williams, John D. ; Mitchell, Michael F. ; Atashbar, Massood Z.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c402t-e62d916026f3b54f7f89fb53fd940ac5f7b5269afce5f2bacdc5eea7a61d91263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Bend radius</topic><topic>Capacitive sensors</topic><topic>Gravure</topic><topic>gravure printing</topic><topic>heater</topic><topic>Heating systems</topic><topic>Humidity</topic><topic>hysteresis</topic><topic>Ink</topic><topic>Multi wall carbon nanotubes</topic><topic>multi-walled carbon nanotubes</topic><topic>Radius of curvature</topic><topic>Relative humidity</topic><topic>Resistive humidity sensor</topic><topic>screen printing</topic><topic>Sensor phenomena and characterization</topic><topic>Sensors</topic><topic>Substrates</topic><topic>Surface roughness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Xingzhe</creatorcontrib><creatorcontrib>Maddipatla, Dinesh</creatorcontrib><creatorcontrib>Bose, Arnesh K.</creatorcontrib><creatorcontrib>Hajian, Sajjad</creatorcontrib><creatorcontrib>Narakathu, Binu Baby</creatorcontrib><creatorcontrib>Williams, John D.</creatorcontrib><creatorcontrib>Mitchell, Michael F.</creatorcontrib><creatorcontrib>Atashbar, Massood Z.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE sensors journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhang, Xingzhe</au><au>Maddipatla, Dinesh</au><au>Bose, Arnesh K.</au><au>Hajian, Sajjad</au><au>Narakathu, Binu Baby</au><au>Williams, John D.</au><au>Mitchell, Michael F.</au><au>Atashbar, Massood Z.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Printed Carbon Nanotubes-Based Flexible Resistive Humidity Sensor</atitle><jtitle>IEEE sensors journal</jtitle><stitle>JSEN</stitle><date>2020-11-01</date><risdate>2020</risdate><volume>20</volume><issue>21</issue><spage>12592</spage><epage>12601</epage><pages>12592-12601</pages><issn>1530-437X</issn><eissn>1558-1748</eissn><coden>ISJEAZ</coden><abstract><![CDATA[A resistive flexible humidity sensor based on multi-walled carbon nanotubes (MWCNTs) was designed and fabricated. Screen and gravure printing processes were used for monolithically fabricating the humidity sensor containing interdigitated electrodes (IDE), a sensing layer and a meandering conductive heater. An average thickness and surface roughness of <inline-formula> <tex-math notation="LaTeX">0.99~\mu \text{m} </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">0.23~\mu \text{m} </tex-math></inline-formula>, respectively, was registered for the printed MWCNTs sensing layer. The capability of the printed sensor, with heater, was investigated by subjecting it to relative humidity (RH) ranging from 10% to 90%. The response demonstrated an overall resistance change of 55% when the sensor was subjected to 90% RH, when compared to 10% RH. A maximum hysteresis of 5.1%, at 70% RH, was calculated for the resistive response of the sensor. The printed sensors can be bend with radius of curvature of 1.5 inch with literally no effect.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSEN.2020.3002951</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-2288-8779</orcidid><orcidid>https://orcid.org/0000-0002-2995-8066</orcidid><orcidid>https://orcid.org/0000-0003-2981-6321</orcidid><orcidid>https://orcid.org/0000-0002-2841-741X</orcidid><orcidid>https://orcid.org/0000-0003-0618-5301</orcidid><orcidid>https://orcid.org/0000-0002-7530-0038</orcidid><orcidid>https://orcid.org/0000-0003-2225-7758</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1530-437X
ispartof IEEE sensors journal, 2020-11, Vol.20 (21), p.12592-12601
issn 1530-437X
1558-1748
language eng
recordid cdi_ieee_primary_9118908
source IEEE Electronic Library (IEL)
subjects Bend radius
Capacitive sensors
Gravure
gravure printing
heater
Heating systems
Humidity
hysteresis
Ink
Multi wall carbon nanotubes
multi-walled carbon nanotubes
Radius of curvature
Relative humidity
Resistive humidity sensor
screen printing
Sensor phenomena and characterization
Sensors
Substrates
Surface roughness
title Printed Carbon Nanotubes-Based Flexible Resistive Humidity Sensor
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T06%3A39%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Printed%20Carbon%20Nanotubes-Based%20Flexible%20Resistive%20Humidity%20Sensor&rft.jtitle=IEEE%20sensors%20journal&rft.au=Zhang,%20Xingzhe&rft.date=2020-11-01&rft.volume=20&rft.issue=21&rft.spage=12592&rft.epage=12601&rft.pages=12592-12601&rft.issn=1530-437X&rft.eissn=1558-1748&rft.coden=ISJEAZ&rft_id=info:doi/10.1109/JSEN.2020.3002951&rft_dat=%3Cproquest_RIE%3E2448441802%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2448441802&rft_id=info:pmid/&rft_ieee_id=9118908&rfr_iscdi=true