Printed Carbon Nanotubes-Based Flexible Resistive Humidity Sensor
A resistive flexible humidity sensor based on multi-walled carbon nanotubes (MWCNTs) was designed and fabricated. Screen and gravure printing processes were used for monolithically fabricating the humidity sensor containing interdigitated electrodes (IDE), a sensing layer and a meandering conductive...
Gespeichert in:
Veröffentlicht in: | IEEE sensors journal 2020-11, Vol.20 (21), p.12592-12601 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A resistive flexible humidity sensor based on multi-walled carbon nanotubes (MWCNTs) was designed and fabricated. Screen and gravure printing processes were used for monolithically fabricating the humidity sensor containing interdigitated electrodes (IDE), a sensing layer and a meandering conductive heater. An average thickness and surface roughness of 0.99~\mu \text{m} and 0.23~\mu \text{m} , respectively, was registered for the printed MWCNTs sensing layer. The capability of the printed sensor, with heater, was investigated by subjecting it to relative humidity (RH) ranging from 10% to 90%. The response demonstrated an overall resistance change of 55% when the sensor was subjected to 90% RH, when compared to 10% RH. A maximum hysteresis of 5.1%, at 70% RH, was calculated for the resistive response of the sensor. The printed sensors can be bend with radius of curvature of 1.5 inch with literally no effect. |
---|---|
ISSN: | 1530-437X 1558-1748 |
DOI: | 10.1109/JSEN.2020.3002951 |