Printed Carbon Nanotubes-Based Flexible Resistive Humidity Sensor

A resistive flexible humidity sensor based on multi-walled carbon nanotubes (MWCNTs) was designed and fabricated. Screen and gravure printing processes were used for monolithically fabricating the humidity sensor containing interdigitated electrodes (IDE), a sensing layer and a meandering conductive...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE sensors journal 2020-11, Vol.20 (21), p.12592-12601
Hauptverfasser: Zhang, Xingzhe, Maddipatla, Dinesh, Bose, Arnesh K., Hajian, Sajjad, Narakathu, Binu Baby, Williams, John D., Mitchell, Michael F., Atashbar, Massood Z.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A resistive flexible humidity sensor based on multi-walled carbon nanotubes (MWCNTs) was designed and fabricated. Screen and gravure printing processes were used for monolithically fabricating the humidity sensor containing interdigitated electrodes (IDE), a sensing layer and a meandering conductive heater. An average thickness and surface roughness of 0.99~\mu \text{m} and 0.23~\mu \text{m} , respectively, was registered for the printed MWCNTs sensing layer. The capability of the printed sensor, with heater, was investigated by subjecting it to relative humidity (RH) ranging from 10% to 90%. The response demonstrated an overall resistance change of 55% when the sensor was subjected to 90% RH, when compared to 10% RH. A maximum hysteresis of 5.1%, at 70% RH, was calculated for the resistive response of the sensor. The printed sensors can be bend with radius of curvature of 1.5 inch with literally no effect.
ISSN:1530-437X
1558-1748
DOI:10.1109/JSEN.2020.3002951