Autonomous Power Allocation Based on Distributed Deep Learning for Device-to-Device Communication Underlaying Cellular Network
For Device-to-device (D2D) communication of Internet-of-Things (IoT) enabled 5G system, there is a limit to allocating resources considering a complicated interference between different links in a centralized manner. If D2D link is controlled by an enhanced node base station (eNB), and thus, remains...
Gespeichert in:
Veröffentlicht in: | IEEE access 2020, Vol.8, p.107853-107864 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | For Device-to-device (D2D) communication of Internet-of-Things (IoT) enabled 5G system, there is a limit to allocating resources considering a complicated interference between different links in a centralized manner. If D2D link is controlled by an enhanced node base station (eNB), and thus, remains a burden on the eNB and it causes delayed latency. This paper proposes a fully autonomous power allocation method for IoT-D2D communication underlaying cellular networks using deep learning. In the proposed scheme, an IoT-D2D transmitter decides the transmit power independently from an eNB and other IoT-D2D devices. In addition, the power set can be nearly optimized by deep learning with distributed manner to achieve higher cell throughput. We present a distributed deep learning architecture in which the devices are trained as a group but operate independently. The deep learning can attain near optimal cell throughput while suppressing interference to eNB. |
---|---|
ISSN: | 2169-3536 2169-3536 |
DOI: | 10.1109/ACCESS.2020.3000350 |