Autonomous Power Allocation Based on Distributed Deep Learning for Device-to-Device Communication Underlaying Cellular Network

For Device-to-device (D2D) communication of Internet-of-Things (IoT) enabled 5G system, there is a limit to allocating resources considering a complicated interference between different links in a centralized manner. If D2D link is controlled by an enhanced node base station (eNB), and thus, remains...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2020, Vol.8, p.107853-107864
Hauptverfasser: Kim, Jeehyeong, Park, Joohan, Noh, Jaewon, Cho, Sunghyun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:For Device-to-device (D2D) communication of Internet-of-Things (IoT) enabled 5G system, there is a limit to allocating resources considering a complicated interference between different links in a centralized manner. If D2D link is controlled by an enhanced node base station (eNB), and thus, remains a burden on the eNB and it causes delayed latency. This paper proposes a fully autonomous power allocation method for IoT-D2D communication underlaying cellular networks using deep learning. In the proposed scheme, an IoT-D2D transmitter decides the transmit power independently from an eNB and other IoT-D2D devices. In addition, the power set can be nearly optimized by deep learning with distributed manner to achieve higher cell throughput. We present a distributed deep learning architecture in which the devices are trained as a group but operate independently. The deep learning can attain near optimal cell throughput while suppressing interference to eNB.
ISSN:2169-3536
2169-3536
DOI:10.1109/ACCESS.2020.3000350