Efficient Low-Resolution Face Recognition via Bridge Distillation
Face recognition in the wild is now advancing towards light-weight models, fast inference speed and resolution-adapted capability. In this paper, we propose a bridge distillation approach to turn a complex face model pretrained on private high-resolution faces into a light-weight one for low-resolut...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on image processing 2020, Vol.29, p.6898-6908 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Face recognition in the wild is now advancing towards light-weight models, fast inference speed and resolution-adapted capability. In this paper, we propose a bridge distillation approach to turn a complex face model pretrained on private high-resolution faces into a light-weight one for low-resolution face recognition. In our approach, such a cross-dataset resolution-adapted knowledge transfer problem is solved via two-step distillation. In the first step, we conduct cross-dataset distillation to transfer the prior knowledge from private high-resolution faces to public high-resolution faces and generate compact and discriminative features. In the second step, the resolution-adapted distillation is conducted to further transfer the prior knowledge to synthetic low-resolution faces via multi-task learning. By learning low-resolution face representations and mimicking the adapted high-resolution knowledge, a light-weight student model can be constructed with high efficiency and promising accuracy in recognizing low-resolution faces. Experimental results show that the student model performs impressively in recognizing low-resolution faces with only 0.21M parameters and 0.057MB memory. Meanwhile, its speed reaches up to 14,705, 934 and 763 faces per second on GPU, CPU and mobile phone, respectively. |
---|---|
ISSN: | 1057-7149 1941-0042 |
DOI: | 10.1109/TIP.2020.2995049 |