Optimal Electric Vehicle Charging Strategy With Markov Decision Process and Reinforcement Learning Technique
Electric vehicles (EVs) have rapidly developed in recent years and their penetration has also significantly increased, which, however, brings new challenges to power systems. Due to their stochastic behaviors, the improper charging strategies for EVs may violate the voltage security region. To addre...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on industry applications 2020-09, Vol.56 (5), p.5811-5823 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Electric vehicles (EVs) have rapidly developed in recent years and their penetration has also significantly increased, which, however, brings new challenges to power systems. Due to their stochastic behaviors, the improper charging strategies for EVs may violate the voltage security region. To address this problem, an optimal EV charging strategy in a distribution network is proposed to maximize the profit of the distribution system operators while satisfying all the physical constraints. When dealing with the uncertainties from EVs, a Markov decision process model is built to characterize the time series of the uncertainties, and then the deep deterministic policy gradient based reinforcement learning technique is utilized to analyze the impact of uncertainties on the charging strategy. Finally, numerical results verify the effectiveness of the proposed method. |
---|---|
ISSN: | 0093-9994 1939-9367 |
DOI: | 10.1109/TIA.2020.2990096 |