Optimal Electric Vehicle Charging Strategy With Markov Decision Process and Reinforcement Learning Technique

Electric vehicles (EVs) have rapidly developed in recent years and their penetration has also significantly increased, which, however, brings new challenges to power systems. Due to their stochastic behaviors, the improper charging strategies for EVs may violate the voltage security region. To addre...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on industry applications 2020-09, Vol.56 (5), p.5811-5823
Hauptverfasser: Ding, Tao, Zeng, Ziyu, Bai, Jiawen, Qin, Boyu, Yang, Yongheng, Shahidehpour, Mohammad
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Electric vehicles (EVs) have rapidly developed in recent years and their penetration has also significantly increased, which, however, brings new challenges to power systems. Due to their stochastic behaviors, the improper charging strategies for EVs may violate the voltage security region. To address this problem, an optimal EV charging strategy in a distribution network is proposed to maximize the profit of the distribution system operators while satisfying all the physical constraints. When dealing with the uncertainties from EVs, a Markov decision process model is built to characterize the time series of the uncertainties, and then the deep deterministic policy gradient based reinforcement learning technique is utilized to analyze the impact of uncertainties on the charging strategy. Finally, numerical results verify the effectiveness of the proposed method.
ISSN:0093-9994
1939-9367
DOI:10.1109/TIA.2020.2990096