Theory of Quantum Computation With Magnetic Clusters

We propose a complete, quantitative quantum computing system that satisfies the five DiVincenzo criteria. The model is based on magnetic clusters with uniaxial anisotropy, where two-state qubits are formed utilizing the two lowest lying states of an anisotropic potential energy. We outline the quant...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on quantum engineering 2020, Vol.1, p.1-8
Hauptverfasser: Dorroh, Daniel D., Olmez, Serkay, Wang, Jian-Ping
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8
container_issue
container_start_page 1
container_title IEEE transactions on quantum engineering
container_volume 1
creator Dorroh, Daniel D.
Olmez, Serkay
Wang, Jian-Ping
description We propose a complete, quantitative quantum computing system that satisfies the five DiVincenzo criteria. The model is based on magnetic clusters with uniaxial anisotropy, where two-state qubits are formed utilizing the two lowest lying states of an anisotropic potential energy. We outline the quantum dynamics required by quantum computing for single-qubit structures, and then define a measurement scheme in which qubit states can be measured by sharp changes in current as voltage across the cluster is varied. We then extend the single-qubit description to multiple qubit interactions, facilitated specifically by an entanglement method that propagates the controlled-not quantum gate.
doi_str_mv 10.1109/TQE.2020.2975765
format Article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9076325</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9076325</ieee_id><doaj_id>oai_doaj_org_article_24ee16009d5e4403a30ef9f6f562a583</doaj_id><sourcerecordid>2532110338</sourcerecordid><originalsourceid>FETCH-LOGICAL-c399t-44fd2dfabd6ca5a4bcaad9ca4488650868b425917df37c4e33e578e3f6fd812a3</originalsourceid><addsrcrecordid>eNpNkE1Lw0AQhoMoWGrvgpeA59T9zu5RQtVCRQoVj8s0mW1T2mzdJIf-e7emiKcdlneemXmS5J6SKaXEPK2WsykjjEyZyWWu5FUyYkqbjGqir__Vt8mkbXeEECYpVYSNErHaog-n1Lt02UPT9Ye08Idj30FX-yb9qrtt-g6bBru6TIt933YY2rvkxsG-xcnlHSefL7NV8ZYtPl7nxfMiK7kxXSaEq1jlYF2pEiSIdQlQmRKE0FpJopVeCyYNzSvH81Ig5yhzjdwpV2nKgI-T-cCtPOzsMdQHCCfroba_Hz5sLIS42B4tE4jxImIqiUIQDpygM5EkFQOpeWQ9Dqxj8N89tp3d-T40cX3LJGdRI-c6psiQKoNv24Dubyol9qzaRtX2rNpeVMeWh6GlRsS_uCG54hH8A-_ueGI</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2532110338</pqid></control><display><type>article</type><title>Theory of Quantum Computation With Magnetic Clusters</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Dorroh, Daniel D. ; Olmez, Serkay ; Wang, Jian-Ping</creator><creatorcontrib>Dorroh, Daniel D. ; Olmez, Serkay ; Wang, Jian-Ping</creatorcontrib><description>We propose a complete, quantitative quantum computing system that satisfies the five DiVincenzo criteria. The model is based on magnetic clusters with uniaxial anisotropy, where two-state qubits are formed utilizing the two lowest lying states of an anisotropic potential energy. We outline the quantum dynamics required by quantum computing for single-qubit structures, and then define a measurement scheme in which qubit states can be measured by sharp changes in current as voltage across the cluster is varied. We then extend the single-qubit description to multiple qubit interactions, facilitated specifically by an entanglement method that propagates the controlled-not quantum gate.</description><identifier>ISSN: 2689-1808</identifier><identifier>EISSN: 2689-1808</identifier><identifier>DOI: 10.1109/TQE.2020.2975765</identifier><identifier>CODEN: ITQEA9</identifier><language>eng</language><publisher>New York: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</publisher><subject>Anisotropic magnetoresistance ; Anisotropy ; Clusters ; Magnetic clusters (MC) ; Nuclear magnetic resonance ; Perpendicular magnetic anisotropy ; Potential energy ; quantum computation ; Quantum computing ; quantum engineering ; Quantum entanglement ; Qubit ; Qubits (quantum computing) ; Superconducting magnets</subject><ispartof>IEEE transactions on quantum engineering, 2020, Vol.1, p.1-8</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c399t-44fd2dfabd6ca5a4bcaad9ca4488650868b425917df37c4e33e578e3f6fd812a3</citedby><cites>FETCH-LOGICAL-c399t-44fd2dfabd6ca5a4bcaad9ca4488650868b425917df37c4e33e578e3f6fd812a3</cites><orcidid>0000-0002-7502-5670 ; 0000-0003-2344-6753 ; 0000-0003-2815-6624</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9076325$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,861,2097,4011,27615,27905,27906,27907,54915</link.rule.ids></links><search><creatorcontrib>Dorroh, Daniel D.</creatorcontrib><creatorcontrib>Olmez, Serkay</creatorcontrib><creatorcontrib>Wang, Jian-Ping</creatorcontrib><title>Theory of Quantum Computation With Magnetic Clusters</title><title>IEEE transactions on quantum engineering</title><addtitle>TQE</addtitle><description>We propose a complete, quantitative quantum computing system that satisfies the five DiVincenzo criteria. The model is based on magnetic clusters with uniaxial anisotropy, where two-state qubits are formed utilizing the two lowest lying states of an anisotropic potential energy. We outline the quantum dynamics required by quantum computing for single-qubit structures, and then define a measurement scheme in which qubit states can be measured by sharp changes in current as voltage across the cluster is varied. We then extend the single-qubit description to multiple qubit interactions, facilitated specifically by an entanglement method that propagates the controlled-not quantum gate.</description><subject>Anisotropic magnetoresistance</subject><subject>Anisotropy</subject><subject>Clusters</subject><subject>Magnetic clusters (MC)</subject><subject>Nuclear magnetic resonance</subject><subject>Perpendicular magnetic anisotropy</subject><subject>Potential energy</subject><subject>quantum computation</subject><subject>Quantum computing</subject><subject>quantum engineering</subject><subject>Quantum entanglement</subject><subject>Qubit</subject><subject>Qubits (quantum computing)</subject><subject>Superconducting magnets</subject><issn>2689-1808</issn><issn>2689-1808</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNkE1Lw0AQhoMoWGrvgpeA59T9zu5RQtVCRQoVj8s0mW1T2mzdJIf-e7emiKcdlneemXmS5J6SKaXEPK2WsykjjEyZyWWu5FUyYkqbjGqir__Vt8mkbXeEECYpVYSNErHaog-n1Lt02UPT9Ye08Idj30FX-yb9qrtt-g6bBru6TIt933YY2rvkxsG-xcnlHSefL7NV8ZYtPl7nxfMiK7kxXSaEq1jlYF2pEiSIdQlQmRKE0FpJopVeCyYNzSvH81Ig5yhzjdwpV2nKgI-T-cCtPOzsMdQHCCfroba_Hz5sLIS42B4tE4jxImIqiUIQDpygM5EkFQOpeWQ9Dqxj8N89tp3d-T40cX3LJGdRI-c6psiQKoNv24Dubyol9qzaRtX2rNpeVMeWh6GlRsS_uCG54hH8A-_ueGI</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Dorroh, Daniel D.</creator><creator>Olmez, Serkay</creator><creator>Wang, Jian-Ping</creator><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><general>IEEE</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-7502-5670</orcidid><orcidid>https://orcid.org/0000-0003-2344-6753</orcidid><orcidid>https://orcid.org/0000-0003-2815-6624</orcidid></search><sort><creationdate>2020</creationdate><title>Theory of Quantum Computation With Magnetic Clusters</title><author>Dorroh, Daniel D. ; Olmez, Serkay ; Wang, Jian-Ping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c399t-44fd2dfabd6ca5a4bcaad9ca4488650868b425917df37c4e33e578e3f6fd812a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Anisotropic magnetoresistance</topic><topic>Anisotropy</topic><topic>Clusters</topic><topic>Magnetic clusters (MC)</topic><topic>Nuclear magnetic resonance</topic><topic>Perpendicular magnetic anisotropy</topic><topic>Potential energy</topic><topic>quantum computation</topic><topic>Quantum computing</topic><topic>quantum engineering</topic><topic>Quantum entanglement</topic><topic>Qubit</topic><topic>Qubits (quantum computing)</topic><topic>Superconducting magnets</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dorroh, Daniel D.</creatorcontrib><creatorcontrib>Olmez, Serkay</creatorcontrib><creatorcontrib>Wang, Jian-Ping</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE transactions on quantum engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dorroh, Daniel D.</au><au>Olmez, Serkay</au><au>Wang, Jian-Ping</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Theory of Quantum Computation With Magnetic Clusters</atitle><jtitle>IEEE transactions on quantum engineering</jtitle><stitle>TQE</stitle><date>2020</date><risdate>2020</risdate><volume>1</volume><spage>1</spage><epage>8</epage><pages>1-8</pages><issn>2689-1808</issn><eissn>2689-1808</eissn><coden>ITQEA9</coden><abstract>We propose a complete, quantitative quantum computing system that satisfies the five DiVincenzo criteria. The model is based on magnetic clusters with uniaxial anisotropy, where two-state qubits are formed utilizing the two lowest lying states of an anisotropic potential energy. We outline the quantum dynamics required by quantum computing for single-qubit structures, and then define a measurement scheme in which qubit states can be measured by sharp changes in current as voltage across the cluster is varied. We then extend the single-qubit description to multiple qubit interactions, facilitated specifically by an entanglement method that propagates the controlled-not quantum gate.</abstract><cop>New York</cop><pub>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</pub><doi>10.1109/TQE.2020.2975765</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-7502-5670</orcidid><orcidid>https://orcid.org/0000-0003-2344-6753</orcidid><orcidid>https://orcid.org/0000-0003-2815-6624</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2689-1808
ispartof IEEE transactions on quantum engineering, 2020, Vol.1, p.1-8
issn 2689-1808
2689-1808
language eng
recordid cdi_ieee_primary_9076325
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals
subjects Anisotropic magnetoresistance
Anisotropy
Clusters
Magnetic clusters (MC)
Nuclear magnetic resonance
Perpendicular magnetic anisotropy
Potential energy
quantum computation
Quantum computing
quantum engineering
Quantum entanglement
Qubit
Qubits (quantum computing)
Superconducting magnets
title Theory of Quantum Computation With Magnetic Clusters
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T10%3A44%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Theory%20of%20Quantum%20Computation%20With%20Magnetic%20Clusters&rft.jtitle=IEEE%20transactions%20on%20quantum%20engineering&rft.au=Dorroh,%20Daniel%20D.&rft.date=2020&rft.volume=1&rft.spage=1&rft.epage=8&rft.pages=1-8&rft.issn=2689-1808&rft.eissn=2689-1808&rft.coden=ITQEA9&rft_id=info:doi/10.1109/TQE.2020.2975765&rft_dat=%3Cproquest_ieee_%3E2532110338%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2532110338&rft_id=info:pmid/&rft_ieee_id=9076325&rft_doaj_id=oai_doaj_org_article_24ee16009d5e4403a30ef9f6f562a583&rfr_iscdi=true