Theory of Quantum Computation With Magnetic Clusters
We propose a complete, quantitative quantum computing system that satisfies the five DiVincenzo criteria. The model is based on magnetic clusters with uniaxial anisotropy, where two-state qubits are formed utilizing the two lowest lying states of an anisotropic potential energy. We outline the quant...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on quantum engineering 2020, Vol.1, p.1-8 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 8 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE transactions on quantum engineering |
container_volume | 1 |
creator | Dorroh, Daniel D. Olmez, Serkay Wang, Jian-Ping |
description | We propose a complete, quantitative quantum computing system that satisfies the five DiVincenzo criteria. The model is based on magnetic clusters with uniaxial anisotropy, where two-state qubits are formed utilizing the two lowest lying states of an anisotropic potential energy. We outline the quantum dynamics required by quantum computing for single-qubit structures, and then define a measurement scheme in which qubit states can be measured by sharp changes in current as voltage across the cluster is varied. We then extend the single-qubit description to multiple qubit interactions, facilitated specifically by an entanglement method that propagates the controlled-not quantum gate. |
doi_str_mv | 10.1109/TQE.2020.2975765 |
format | Article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9076325</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9076325</ieee_id><doaj_id>oai_doaj_org_article_24ee16009d5e4403a30ef9f6f562a583</doaj_id><sourcerecordid>2532110338</sourcerecordid><originalsourceid>FETCH-LOGICAL-c399t-44fd2dfabd6ca5a4bcaad9ca4488650868b425917df37c4e33e578e3f6fd812a3</originalsourceid><addsrcrecordid>eNpNkE1Lw0AQhoMoWGrvgpeA59T9zu5RQtVCRQoVj8s0mW1T2mzdJIf-e7emiKcdlneemXmS5J6SKaXEPK2WsykjjEyZyWWu5FUyYkqbjGqir__Vt8mkbXeEECYpVYSNErHaog-n1Lt02UPT9Ye08Idj30FX-yb9qrtt-g6bBru6TIt933YY2rvkxsG-xcnlHSefL7NV8ZYtPl7nxfMiK7kxXSaEq1jlYF2pEiSIdQlQmRKE0FpJopVeCyYNzSvH81Ig5yhzjdwpV2nKgI-T-cCtPOzsMdQHCCfroba_Hz5sLIS42B4tE4jxImIqiUIQDpygM5EkFQOpeWQ9Dqxj8N89tp3d-T40cX3LJGdRI-c6psiQKoNv24Dubyol9qzaRtX2rNpeVMeWh6GlRsS_uCG54hH8A-_ueGI</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2532110338</pqid></control><display><type>article</type><title>Theory of Quantum Computation With Magnetic Clusters</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Dorroh, Daniel D. ; Olmez, Serkay ; Wang, Jian-Ping</creator><creatorcontrib>Dorroh, Daniel D. ; Olmez, Serkay ; Wang, Jian-Ping</creatorcontrib><description>We propose a complete, quantitative quantum computing system that satisfies the five DiVincenzo criteria. The model is based on magnetic clusters with uniaxial anisotropy, where two-state qubits are formed utilizing the two lowest lying states of an anisotropic potential energy. We outline the quantum dynamics required by quantum computing for single-qubit structures, and then define a measurement scheme in which qubit states can be measured by sharp changes in current as voltage across the cluster is varied. We then extend the single-qubit description to multiple qubit interactions, facilitated specifically by an entanglement method that propagates the controlled-not quantum gate.</description><identifier>ISSN: 2689-1808</identifier><identifier>EISSN: 2689-1808</identifier><identifier>DOI: 10.1109/TQE.2020.2975765</identifier><identifier>CODEN: ITQEA9</identifier><language>eng</language><publisher>New York: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</publisher><subject>Anisotropic magnetoresistance ; Anisotropy ; Clusters ; Magnetic clusters (MC) ; Nuclear magnetic resonance ; Perpendicular magnetic anisotropy ; Potential energy ; quantum computation ; Quantum computing ; quantum engineering ; Quantum entanglement ; Qubit ; Qubits (quantum computing) ; Superconducting magnets</subject><ispartof>IEEE transactions on quantum engineering, 2020, Vol.1, p.1-8</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c399t-44fd2dfabd6ca5a4bcaad9ca4488650868b425917df37c4e33e578e3f6fd812a3</citedby><cites>FETCH-LOGICAL-c399t-44fd2dfabd6ca5a4bcaad9ca4488650868b425917df37c4e33e578e3f6fd812a3</cites><orcidid>0000-0002-7502-5670 ; 0000-0003-2344-6753 ; 0000-0003-2815-6624</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9076325$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,861,2097,4011,27615,27905,27906,27907,54915</link.rule.ids></links><search><creatorcontrib>Dorroh, Daniel D.</creatorcontrib><creatorcontrib>Olmez, Serkay</creatorcontrib><creatorcontrib>Wang, Jian-Ping</creatorcontrib><title>Theory of Quantum Computation With Magnetic Clusters</title><title>IEEE transactions on quantum engineering</title><addtitle>TQE</addtitle><description>We propose a complete, quantitative quantum computing system that satisfies the five DiVincenzo criteria. The model is based on magnetic clusters with uniaxial anisotropy, where two-state qubits are formed utilizing the two lowest lying states of an anisotropic potential energy. We outline the quantum dynamics required by quantum computing for single-qubit structures, and then define a measurement scheme in which qubit states can be measured by sharp changes in current as voltage across the cluster is varied. We then extend the single-qubit description to multiple qubit interactions, facilitated specifically by an entanglement method that propagates the controlled-not quantum gate.</description><subject>Anisotropic magnetoresistance</subject><subject>Anisotropy</subject><subject>Clusters</subject><subject>Magnetic clusters (MC)</subject><subject>Nuclear magnetic resonance</subject><subject>Perpendicular magnetic anisotropy</subject><subject>Potential energy</subject><subject>quantum computation</subject><subject>Quantum computing</subject><subject>quantum engineering</subject><subject>Quantum entanglement</subject><subject>Qubit</subject><subject>Qubits (quantum computing)</subject><subject>Superconducting magnets</subject><issn>2689-1808</issn><issn>2689-1808</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNkE1Lw0AQhoMoWGrvgpeA59T9zu5RQtVCRQoVj8s0mW1T2mzdJIf-e7emiKcdlneemXmS5J6SKaXEPK2WsykjjEyZyWWu5FUyYkqbjGqir__Vt8mkbXeEECYpVYSNErHaog-n1Lt02UPT9Ye08Idj30FX-yb9qrtt-g6bBru6TIt933YY2rvkxsG-xcnlHSefL7NV8ZYtPl7nxfMiK7kxXSaEq1jlYF2pEiSIdQlQmRKE0FpJopVeCyYNzSvH81Ig5yhzjdwpV2nKgI-T-cCtPOzsMdQHCCfroba_Hz5sLIS42B4tE4jxImIqiUIQDpygM5EkFQOpeWQ9Dqxj8N89tp3d-T40cX3LJGdRI-c6psiQKoNv24Dubyol9qzaRtX2rNpeVMeWh6GlRsS_uCG54hH8A-_ueGI</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Dorroh, Daniel D.</creator><creator>Olmez, Serkay</creator><creator>Wang, Jian-Ping</creator><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><general>IEEE</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-7502-5670</orcidid><orcidid>https://orcid.org/0000-0003-2344-6753</orcidid><orcidid>https://orcid.org/0000-0003-2815-6624</orcidid></search><sort><creationdate>2020</creationdate><title>Theory of Quantum Computation With Magnetic Clusters</title><author>Dorroh, Daniel D. ; Olmez, Serkay ; Wang, Jian-Ping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c399t-44fd2dfabd6ca5a4bcaad9ca4488650868b425917df37c4e33e578e3f6fd812a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Anisotropic magnetoresistance</topic><topic>Anisotropy</topic><topic>Clusters</topic><topic>Magnetic clusters (MC)</topic><topic>Nuclear magnetic resonance</topic><topic>Perpendicular magnetic anisotropy</topic><topic>Potential energy</topic><topic>quantum computation</topic><topic>Quantum computing</topic><topic>quantum engineering</topic><topic>Quantum entanglement</topic><topic>Qubit</topic><topic>Qubits (quantum computing)</topic><topic>Superconducting magnets</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dorroh, Daniel D.</creatorcontrib><creatorcontrib>Olmez, Serkay</creatorcontrib><creatorcontrib>Wang, Jian-Ping</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE transactions on quantum engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dorroh, Daniel D.</au><au>Olmez, Serkay</au><au>Wang, Jian-Ping</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Theory of Quantum Computation With Magnetic Clusters</atitle><jtitle>IEEE transactions on quantum engineering</jtitle><stitle>TQE</stitle><date>2020</date><risdate>2020</risdate><volume>1</volume><spage>1</spage><epage>8</epage><pages>1-8</pages><issn>2689-1808</issn><eissn>2689-1808</eissn><coden>ITQEA9</coden><abstract>We propose a complete, quantitative quantum computing system that satisfies the five DiVincenzo criteria. The model is based on magnetic clusters with uniaxial anisotropy, where two-state qubits are formed utilizing the two lowest lying states of an anisotropic potential energy. We outline the quantum dynamics required by quantum computing for single-qubit structures, and then define a measurement scheme in which qubit states can be measured by sharp changes in current as voltage across the cluster is varied. We then extend the single-qubit description to multiple qubit interactions, facilitated specifically by an entanglement method that propagates the controlled-not quantum gate.</abstract><cop>New York</cop><pub>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</pub><doi>10.1109/TQE.2020.2975765</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-7502-5670</orcidid><orcidid>https://orcid.org/0000-0003-2344-6753</orcidid><orcidid>https://orcid.org/0000-0003-2815-6624</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2689-1808 |
ispartof | IEEE transactions on quantum engineering, 2020, Vol.1, p.1-8 |
issn | 2689-1808 2689-1808 |
language | eng |
recordid | cdi_ieee_primary_9076325 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals |
subjects | Anisotropic magnetoresistance Anisotropy Clusters Magnetic clusters (MC) Nuclear magnetic resonance Perpendicular magnetic anisotropy Potential energy quantum computation Quantum computing quantum engineering Quantum entanglement Qubit Qubits (quantum computing) Superconducting magnets |
title | Theory of Quantum Computation With Magnetic Clusters |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T10%3A44%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Theory%20of%20Quantum%20Computation%20With%20Magnetic%20Clusters&rft.jtitle=IEEE%20transactions%20on%20quantum%20engineering&rft.au=Dorroh,%20Daniel%20D.&rft.date=2020&rft.volume=1&rft.spage=1&rft.epage=8&rft.pages=1-8&rft.issn=2689-1808&rft.eissn=2689-1808&rft.coden=ITQEA9&rft_id=info:doi/10.1109/TQE.2020.2975765&rft_dat=%3Cproquest_ieee_%3E2532110338%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2532110338&rft_id=info:pmid/&rft_ieee_id=9076325&rft_doaj_id=oai_doaj_org_article_24ee16009d5e4403a30ef9f6f562a583&rfr_iscdi=true |