Theory of Quantum Computation With Magnetic Clusters
We propose a complete, quantitative quantum computing system that satisfies the five DiVincenzo criteria. The model is based on magnetic clusters with uniaxial anisotropy, where two-state qubits are formed utilizing the two lowest lying states of an anisotropic potential energy. We outline the quant...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on quantum engineering 2020, Vol.1, p.1-8 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We propose a complete, quantitative quantum computing system that satisfies the five DiVincenzo criteria. The model is based on magnetic clusters with uniaxial anisotropy, where two-state qubits are formed utilizing the two lowest lying states of an anisotropic potential energy. We outline the quantum dynamics required by quantum computing for single-qubit structures, and then define a measurement scheme in which qubit states can be measured by sharp changes in current as voltage across the cluster is varied. We then extend the single-qubit description to multiple qubit interactions, facilitated specifically by an entanglement method that propagates the controlled-not quantum gate. |
---|---|
ISSN: | 2689-1808 2689-1808 |
DOI: | 10.1109/TQE.2020.2975765 |