A Sustainable Incentive Scheme for Federated Learning
In federated learning (FL), a federation distributedly trains a collective machine learning model by leveraging privacy preserving technologies. However, FL participants need to incur some cost for contributing to the FL models. The training and commercialization of the models will take time. Thus,...
Gespeichert in:
Veröffentlicht in: | IEEE intelligent systems 2020-07, Vol.35 (4), p.58-69 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In federated learning (FL), a federation distributedly trains a collective machine learning model by leveraging privacy preserving technologies. However, FL participants need to incur some cost for contributing to the FL models. The training and commercialization of the models will take time. Thus, there will be delays before the federation could pay back the participants. This temporary mismatch between contributions and rewards has not been accounted for by existing payoff-sharing schemes. To address this limitation, we propose the FL incentivizer (FLI). It dynamically divides a given budget in a context-aware manner among data owners in a federation by jointly maximizing the collective utility while minimizing the inequality among the data owners, in terms of the payoff received and the waiting time for receiving payoffs. Comparisons with five state-of-the-art payoff-sharing schemes show that FLI attracts high-quality data owners and achieves the highest expected revenue for a federation. |
---|---|
ISSN: | 1541-1672 1941-1294 |
DOI: | 10.1109/MIS.2020.2987774 |