An invariant local vector for content-based image retrieval
In this paper, we present the use of Full-Zernike moments as a local characterization of the image signal. Their computation allows us to construct a locally invariant vector, of which the projection in an index table provides a vote for some model-image. This approach is based on the quasi-invarian...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we present the use of Full-Zernike moments as a local characterization of the image signal. Their computation allows us to construct a locally invariant vector, of which the projection in an index table provides a vote for some model-image. This approach is based on the quasi-invariant theory applied to perspective transformation. Then it requires a characterization being invariant to translation, rotation and change of scale in the image; in other respect, an appropriate normalization of the signal delivers an invariance to illuminance conditions. |
---|---|
ISSN: | 1051-4651 2831-7475 |
DOI: | 10.1109/ICPR.2000.905644 |