Tunable Matching Networks Based on Phase-Switched Impedance Modulation1

The ability to provide accurate, rapid, and dynamically controlled impedance matching offers significant advantages to a wide range of present and emerging radio-frequency (RF) power applications. This article develops a new type of tunable matching network (TMN) that enables a combination of much f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on power electronics 2020-10, Vol.35 (10), p.10150-10167
Hauptverfasser: Jurkov, Alexander S., Radomski, Aaron, Perreault, David J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The ability to provide accurate, rapid, and dynamically controlled impedance matching offers significant advantages to a wide range of present and emerging radio-frequency (RF) power applications. This article develops a new type of tunable matching network (TMN) that enables a combination of much faster and more accurate impedance matching than is available with conventional techniques and is suitable for use at high power levels. This implementation is based on a narrow-band technique, termed here phase-switched impedance modulation (PSIM), which entails the switching of passive elements at the RF operating frequency, effectively modulating their impedances. The proposed approach provides absorption of device parasitics and zero-voltage switching (ZVS) of the active devices, and we introduce control techniques that enable ZVS operation to be maintained across operating conditions. A prototype PSIM-based TMN is developed that provides a 50-Ω match over a load impedance range suitable for inductively coupled plasma processes. The prototype TMN operates at frequencies centered around 13.56 MHz at input RF power levels of up to 200 W.
ISSN:0885-8993
1941-0107
DOI:10.1109/TPEL.2020.2980214