Properties and Constructions of Constrained Codes for DNA-Based Data Storage
We describe properties and constructions of constraint-based codes for DNA-based data storage which account for the maximum repetition length and AT/GC balance. Generating functions and approximations are presented for computing the number of sequences with maximum repetition length and AT/GC balanc...
Gespeichert in:
Veröffentlicht in: | IEEE access 2020, Vol.8, p.49523-49531 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We describe properties and constructions of constraint-based codes for DNA-based data storage which account for the maximum repetition length and AT/GC balance. Generating functions and approximations are presented for computing the number of sequences with maximum repetition length and AT/GC balance constraint. We describe routines for translating binary runlength limited and/or balanced strings into DNA strands, and compute the efficiency of such routines. Expressions for the redundancy of codes that account for both the maximum repetition length and AT/GC balance are derived. |
---|---|
ISSN: | 2169-3536 2169-3536 |
DOI: | 10.1109/ACCESS.2020.2980036 |