So2Sat LCZ42: A Benchmark Data Set for the Classification of Global Local Climate Zones [Software and Data Sets]

Gaining access to labeled reference data is one of the great challenges in supervised machine-learning endeavors. This is especially true for an automated analysis of remote sensing images on a global scale, which enables us to address global challenges, such as urbanization and climate change, usin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE geoscience and remote sensing magazine 2020-09, Vol.8 (3), p.76-89
Hauptverfasser: Zhu, Xiao Xiang, Hu, Jingliang, Qiu, Chunping, Shi, Yilei, Kang, Jian, Mou, Lichao, Bagheri, Hossein, Haberle, Matthias, Hua, Yuansheng, Huang, Rong, Hughes, Lloyd, Li, Hao, Sun, Yao, Zhang, Guichen, Han, Shiyao, Schmitt, Michael, Wang, Yuanyuan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Gaining access to labeled reference data is one of the great challenges in supervised machine-learning endeavors. This is especially true for an automated analysis of remote sensing images on a global scale, which enables us to address global challenges, such as urbanization and climate change, using state-of-the-art machine-learning techniques. To meet these pressing needs, especially in urban research, we provide open access to a valuable benchmark data set, So2Sat LCZ42, which consists of local-climate-zone (LCZ) labels of approximately half a million Sentinel-1 and Sentinel-2 image patches in 42 urban agglomerations (plus 10 additional smaller areas) across the globe.
ISSN:2473-2397
2168-6831
DOI:10.1109/MGRS.2020.2964708