Shift invariant restoration-an overcomplete maxent MAP framework
Translation-invariant denoising was introduced by Coifman and Donoho (1995) to overcome Gibbs-type phenomena produced by transform-domain shrinkage estimators in the vicinity of signal discontinuities. Shrinkage estimators are in general not shift-invariant. Shift-invariant denoising consists of a s...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 272 vol.3 |
---|---|
container_issue | |
container_start_page | 270 |
container_title | |
container_volume | 3 |
creator | Ishwar, P. Moulin, P. |
description | Translation-invariant denoising was introduced by Coifman and Donoho (1995) to overcome Gibbs-type phenomena produced by transform-domain shrinkage estimators in the vicinity of signal discontinuities. Shrinkage estimators are in general not shift-invariant. Shift-invariant denoising consists of a simple averaging of the shrinkage estimates over a family of cyclic spatial-shifts of the image. Shift-invariant denoising is denoising in an overcomplete basis, and work in this area has been devoted towards finding a best basis in the overcomplete family. This paper presents a maximum a posteriori (MAP) framework for shift-invariant restoration of images using the maximum-entropy prior consistent with moment constraints on the transform coefficients in different subbands. The simple averaging of estimates in the classical shift-invariant denoising can then be shown to be a certain limiting case within this framework. |
doi_str_mv | 10.1109/ICIP.2000.899347 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_899347</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>899347</ieee_id><sourcerecordid>899347</sourcerecordid><originalsourceid>FETCH-LOGICAL-i104t-530e8dbac624c04bdbb6ab93c998013f681485806af8114dddda8ee8962fe703</originalsourceid><addsrcrecordid>eNotj0tLw0AUhQcfYKzdi6v8gYl3Hpnc2VmCj0DFgt2XSXKDo01SJkPVf2-gns3ZfOeDw9itgEwIsPdVWW0yCQAZWqt0ccYSqVBwzLU9Z9dQICgjbVFcsETkUnKNCFdsOU2f8wh0rguUCXt4__BdTP1wdMG7IaaBpjgGF_04cDek45FCM_aHPUVKe_dDM_K62qRdcD19j-Hrhl12bj_R8r8XbPv0uC1f-PrtuSpXa-4F6MhzBYRt7RojdQO6buvauNqqxloEoTqDQmOOYFyHQuh2jkMitEZ2VIBasLuT1hPR7hB878Lv7nRd_QGLqkuA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Shift invariant restoration-an overcomplete maxent MAP framework</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Ishwar, P. ; Moulin, P.</creator><creatorcontrib>Ishwar, P. ; Moulin, P.</creatorcontrib><description>Translation-invariant denoising was introduced by Coifman and Donoho (1995) to overcome Gibbs-type phenomena produced by transform-domain shrinkage estimators in the vicinity of signal discontinuities. Shrinkage estimators are in general not shift-invariant. Shift-invariant denoising consists of a simple averaging of the shrinkage estimates over a family of cyclic spatial-shifts of the image. Shift-invariant denoising is denoising in an overcomplete basis, and work in this area has been devoted towards finding a best basis in the overcomplete family. This paper presents a maximum a posteriori (MAP) framework for shift-invariant restoration of images using the maximum-entropy prior consistent with moment constraints on the transform coefficients in different subbands. The simple averaging of estimates in the classical shift-invariant denoising can then be shown to be a certain limiting case within this framework.</description><identifier>ISSN: 1522-4880</identifier><identifier>ISBN: 0780362977</identifier><identifier>ISBN: 9780780362970</identifier><identifier>EISSN: 2381-8549</identifier><identifier>DOI: 10.1109/ICIP.2000.899347</identifier><language>eng</language><publisher>IEEE</publisher><subject>Additive white noise ; AWGN ; Bayesian methods ; Gaussian noise ; Image restoration ; Kernel ; Noise reduction ; Pixel ; Vectors ; Wavelet coefficients</subject><ispartof>Proceedings 2000 International Conference on Image Processing (Cat. No.00CH37101), 2000, Vol.3, p.270-272 vol.3</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/899347$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,4050,4051,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/899347$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ishwar, P.</creatorcontrib><creatorcontrib>Moulin, P.</creatorcontrib><title>Shift invariant restoration-an overcomplete maxent MAP framework</title><title>Proceedings 2000 International Conference on Image Processing (Cat. No.00CH37101)</title><addtitle>ICIP</addtitle><description>Translation-invariant denoising was introduced by Coifman and Donoho (1995) to overcome Gibbs-type phenomena produced by transform-domain shrinkage estimators in the vicinity of signal discontinuities. Shrinkage estimators are in general not shift-invariant. Shift-invariant denoising consists of a simple averaging of the shrinkage estimates over a family of cyclic spatial-shifts of the image. Shift-invariant denoising is denoising in an overcomplete basis, and work in this area has been devoted towards finding a best basis in the overcomplete family. This paper presents a maximum a posteriori (MAP) framework for shift-invariant restoration of images using the maximum-entropy prior consistent with moment constraints on the transform coefficients in different subbands. The simple averaging of estimates in the classical shift-invariant denoising can then be shown to be a certain limiting case within this framework.</description><subject>Additive white noise</subject><subject>AWGN</subject><subject>Bayesian methods</subject><subject>Gaussian noise</subject><subject>Image restoration</subject><subject>Kernel</subject><subject>Noise reduction</subject><subject>Pixel</subject><subject>Vectors</subject><subject>Wavelet coefficients</subject><issn>1522-4880</issn><issn>2381-8549</issn><isbn>0780362977</isbn><isbn>9780780362970</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2000</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotj0tLw0AUhQcfYKzdi6v8gYl3Hpnc2VmCj0DFgt2XSXKDo01SJkPVf2-gns3ZfOeDw9itgEwIsPdVWW0yCQAZWqt0ccYSqVBwzLU9Z9dQICgjbVFcsETkUnKNCFdsOU2f8wh0rguUCXt4__BdTP1wdMG7IaaBpjgGF_04cDek45FCM_aHPUVKe_dDM_K62qRdcD19j-Hrhl12bj_R8r8XbPv0uC1f-PrtuSpXa-4F6MhzBYRt7RojdQO6buvauNqqxloEoTqDQmOOYFyHQuh2jkMitEZ2VIBasLuT1hPR7hB878Lv7nRd_QGLqkuA</recordid><startdate>2000</startdate><enddate>2000</enddate><creator>Ishwar, P.</creator><creator>Moulin, P.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>2000</creationdate><title>Shift invariant restoration-an overcomplete maxent MAP framework</title><author>Ishwar, P. ; Moulin, P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i104t-530e8dbac624c04bdbb6ab93c998013f681485806af8114dddda8ee8962fe703</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Additive white noise</topic><topic>AWGN</topic><topic>Bayesian methods</topic><topic>Gaussian noise</topic><topic>Image restoration</topic><topic>Kernel</topic><topic>Noise reduction</topic><topic>Pixel</topic><topic>Vectors</topic><topic>Wavelet coefficients</topic><toplevel>online_resources</toplevel><creatorcontrib>Ishwar, P.</creatorcontrib><creatorcontrib>Moulin, P.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ishwar, P.</au><au>Moulin, P.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Shift invariant restoration-an overcomplete maxent MAP framework</atitle><btitle>Proceedings 2000 International Conference on Image Processing (Cat. No.00CH37101)</btitle><stitle>ICIP</stitle><date>2000</date><risdate>2000</risdate><volume>3</volume><spage>270</spage><epage>272 vol.3</epage><pages>270-272 vol.3</pages><issn>1522-4880</issn><eissn>2381-8549</eissn><isbn>0780362977</isbn><isbn>9780780362970</isbn><abstract>Translation-invariant denoising was introduced by Coifman and Donoho (1995) to overcome Gibbs-type phenomena produced by transform-domain shrinkage estimators in the vicinity of signal discontinuities. Shrinkage estimators are in general not shift-invariant. Shift-invariant denoising consists of a simple averaging of the shrinkage estimates over a family of cyclic spatial-shifts of the image. Shift-invariant denoising is denoising in an overcomplete basis, and work in this area has been devoted towards finding a best basis in the overcomplete family. This paper presents a maximum a posteriori (MAP) framework for shift-invariant restoration of images using the maximum-entropy prior consistent with moment constraints on the transform coefficients in different subbands. The simple averaging of estimates in the classical shift-invariant denoising can then be shown to be a certain limiting case within this framework.</abstract><pub>IEEE</pub><doi>10.1109/ICIP.2000.899347</doi></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1522-4880 |
ispartof | Proceedings 2000 International Conference on Image Processing (Cat. No.00CH37101), 2000, Vol.3, p.270-272 vol.3 |
issn | 1522-4880 2381-8549 |
language | eng |
recordid | cdi_ieee_primary_899347 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Additive white noise AWGN Bayesian methods Gaussian noise Image restoration Kernel Noise reduction Pixel Vectors Wavelet coefficients |
title | Shift invariant restoration-an overcomplete maxent MAP framework |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T14%3A46%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Shift%20invariant%20restoration-an%20overcomplete%20maxent%20MAP%20framework&rft.btitle=Proceedings%202000%20International%20Conference%20on%20Image%20Processing%20(Cat.%20No.00CH37101)&rft.au=Ishwar,%20P.&rft.date=2000&rft.volume=3&rft.spage=270&rft.epage=272%20vol.3&rft.pages=270-272%20vol.3&rft.issn=1522-4880&rft.eissn=2381-8549&rft.isbn=0780362977&rft.isbn_list=9780780362970&rft_id=info:doi/10.1109/ICIP.2000.899347&rft_dat=%3Cieee_6IE%3E899347%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=899347&rfr_iscdi=true |