Shift invariant restoration-an overcomplete maxent MAP framework
Translation-invariant denoising was introduced by Coifman and Donoho (1995) to overcome Gibbs-type phenomena produced by transform-domain shrinkage estimators in the vicinity of signal discontinuities. Shrinkage estimators are in general not shift-invariant. Shift-invariant denoising consists of a s...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Translation-invariant denoising was introduced by Coifman and Donoho (1995) to overcome Gibbs-type phenomena produced by transform-domain shrinkage estimators in the vicinity of signal discontinuities. Shrinkage estimators are in general not shift-invariant. Shift-invariant denoising consists of a simple averaging of the shrinkage estimates over a family of cyclic spatial-shifts of the image. Shift-invariant denoising is denoising in an overcomplete basis, and work in this area has been devoted towards finding a best basis in the overcomplete family. This paper presents a maximum a posteriori (MAP) framework for shift-invariant restoration of images using the maximum-entropy prior consistent with moment constraints on the transform coefficients in different subbands. The simple averaging of estimates in the classical shift-invariant denoising can then be shown to be a certain limiting case within this framework. |
---|---|
ISSN: | 1522-4880 2381-8549 |
DOI: | 10.1109/ICIP.2000.899347 |