Accurate alignment of functional EPI data to anatomical MRI using a physics-based distortion model
Mapping of functional magnetic resonance imaging (fMRI) to conventional anatomical MRI is a valuable step in the interpretation of fMRI activations. One of the main limits on the accuracy of this alignment arises from differences in the geometric distortion induced by magnetic field inhomogeneity. T...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on medical imaging 2000-11, Vol.19 (11), p.1115-1127 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1127 |
---|---|
container_issue | 11 |
container_start_page | 1115 |
container_title | IEEE transactions on medical imaging |
container_volume | 19 |
creator | Studholme, C. Constable, R.T. Duncan, J.S. |
description | Mapping of functional magnetic resonance imaging (fMRI) to conventional anatomical MRI is a valuable step in the interpretation of fMRI activations. One of the main limits on the accuracy of this alignment arises from differences in the geometric distortion induced by magnetic field inhomogeneity. This paper describes an approach to the registration of echo planar image (EPI) data to conventional anatomical images which takes into account this difference in geometric distortion. The authors make use of an additional spin echo EPI image and use the known signal conservation in spin echo distortion to derive a specialized multimodality nonrigid registration algorithm. They also examine a plausible modification using log-intensity evaluation of the criterion to provide increased sensitivity in areas of low EPI signal. A phantom-based imaging experiment is used to evaluate the behavior of the different criteria, comparing nonrigid displacement estimates to those provided by a magnetic field mapping acquisition. The algorithm is then applied to a range of nine brain imaging studies illustrating global and local improvement in the anatomical alignment and localization of fMRI activations. |
doi_str_mv | 10.1109/42.896788 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_896788</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>896788</ieee_id><sourcerecordid>2434354991</sourcerecordid><originalsourceid>FETCH-LOGICAL-c515t-562306279b6231ffa4b65d704b65890fe328b972d7b290f923697c4b91d06f133</originalsourceid><addsrcrecordid>eNqF0UtLHTEUAOBQKvVqu3DbRQkKiouxeU6SpYiPC0pLaaG7IZNJbGRmck0yC_-9GeZSwYWu8vpyzkkOAAcYnWGM1HdGzqSqhZQfwApzLivC2d-PYIWIkBVCNdkFeyk9IIQZR-oT2MWYICaZWoH23Jgp6myh7v39ONgxw-Cgm0aTfRh1Dy9_rmGns4Y5QD3qHAZvyvbdrzWckh_voYabf0_Jm1S1OtkOdj7lEOfbcAid7T-DHaf7ZL9sx33w5-ry98VNdfvjen1xflsZjnmueE1oKVWotkywc5q1Ne8EmgepkLOUyFYJ0omWlKUitFbCsFbhDtUOU7oPTpa4mxgeJ5tyM_hkbN_r0YYpNVLK8u6asCKP35SCcFpSonchkVhSptT7EDNaE04KPHwFH8IUyz_P9XFEpaBzfacLMjGkFK1rNtEPOj41GDVzxxtGmqXjxX7bBpzawXYvctviAo62QKfSOBf1aHz67yTnDM_q66K8tfblcMnxDNiHt30</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>885038734</pqid></control><display><type>article</type><title>Accurate alignment of functional EPI data to anatomical MRI using a physics-based distortion model</title><source>IEEE Electronic Library (IEL)</source><creator>Studholme, C. ; Constable, R.T. ; Duncan, J.S.</creator><creatorcontrib>Studholme, C. ; Constable, R.T. ; Duncan, J.S.</creatorcontrib><description>Mapping of functional magnetic resonance imaging (fMRI) to conventional anatomical MRI is a valuable step in the interpretation of fMRI activations. One of the main limits on the accuracy of this alignment arises from differences in the geometric distortion induced by magnetic field inhomogeneity. This paper describes an approach to the registration of echo planar image (EPI) data to conventional anatomical images which takes into account this difference in geometric distortion. The authors make use of an additional spin echo EPI image and use the known signal conservation in spin echo distortion to derive a specialized multimodality nonrigid registration algorithm. They also examine a plausible modification using log-intensity evaluation of the criterion to provide increased sensitivity in areas of low EPI signal. A phantom-based imaging experiment is used to evaluate the behavior of the different criteria, comparing nonrigid displacement estimates to those provided by a magnetic field mapping acquisition. The algorithm is then applied to a range of nine brain imaging studies illustrating global and local improvement in the anatomical alignment and localization of fMRI activations.</description><identifier>ISSN: 0278-0062</identifier><identifier>EISSN: 1558-254X</identifier><identifier>DOI: 10.1109/42.896788</identifier><identifier>PMID: 11204849</identifier><identifier>CODEN: ITMID4</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Algorithms ; Anatomical structure ; Biological and medical sciences ; Brain ; Computed tomography ; Distortion ; Humans ; Image processing ; Investigative techniques, diagnostic techniques (general aspects) ; Magnetic field measurement ; Magnetic fields ; Magnetic Resonance Imaging ; Magnetic susceptibility ; Mathematical techniques ; Medical sciences ; Models, Anatomic ; Models, Theoretical ; Mutual information ; Nervous system ; NMR ; Nuclear magnetic resonance ; Phantoms, Imaging ; Physical Phenomena ; Physics ; Radiodiagnosis. Nmr imagery. Nmr spectrometry ; Radiology ; Reproducibility of Results ; Studies ; Tissue</subject><ispartof>IEEE transactions on medical imaging, 2000-11, Vol.19 (11), p.1115-1127</ispartof><rights>2001 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2000</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c515t-562306279b6231ffa4b65d704b65890fe328b972d7b290f923697c4b91d06f133</citedby><cites>FETCH-LOGICAL-c515t-562306279b6231ffa4b65d704b65890fe328b972d7b290f923697c4b91d06f133</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/896788$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/896788$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=855419$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11204849$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Studholme, C.</creatorcontrib><creatorcontrib>Constable, R.T.</creatorcontrib><creatorcontrib>Duncan, J.S.</creatorcontrib><title>Accurate alignment of functional EPI data to anatomical MRI using a physics-based distortion model</title><title>IEEE transactions on medical imaging</title><addtitle>TMI</addtitle><addtitle>IEEE Trans Med Imaging</addtitle><description>Mapping of functional magnetic resonance imaging (fMRI) to conventional anatomical MRI is a valuable step in the interpretation of fMRI activations. One of the main limits on the accuracy of this alignment arises from differences in the geometric distortion induced by magnetic field inhomogeneity. This paper describes an approach to the registration of echo planar image (EPI) data to conventional anatomical images which takes into account this difference in geometric distortion. The authors make use of an additional spin echo EPI image and use the known signal conservation in spin echo distortion to derive a specialized multimodality nonrigid registration algorithm. They also examine a plausible modification using log-intensity evaluation of the criterion to provide increased sensitivity in areas of low EPI signal. A phantom-based imaging experiment is used to evaluate the behavior of the different criteria, comparing nonrigid displacement estimates to those provided by a magnetic field mapping acquisition. The algorithm is then applied to a range of nine brain imaging studies illustrating global and local improvement in the anatomical alignment and localization of fMRI activations.</description><subject>Algorithms</subject><subject>Anatomical structure</subject><subject>Biological and medical sciences</subject><subject>Brain</subject><subject>Computed tomography</subject><subject>Distortion</subject><subject>Humans</subject><subject>Image processing</subject><subject>Investigative techniques, diagnostic techniques (general aspects)</subject><subject>Magnetic field measurement</subject><subject>Magnetic fields</subject><subject>Magnetic Resonance Imaging</subject><subject>Magnetic susceptibility</subject><subject>Mathematical techniques</subject><subject>Medical sciences</subject><subject>Models, Anatomic</subject><subject>Models, Theoretical</subject><subject>Mutual information</subject><subject>Nervous system</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Phantoms, Imaging</subject><subject>Physical Phenomena</subject><subject>Physics</subject><subject>Radiodiagnosis. Nmr imagery. Nmr spectrometry</subject><subject>Radiology</subject><subject>Reproducibility of Results</subject><subject>Studies</subject><subject>Tissue</subject><issn>0278-0062</issn><issn>1558-254X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNqF0UtLHTEUAOBQKvVqu3DbRQkKiouxeU6SpYiPC0pLaaG7IZNJbGRmck0yC_-9GeZSwYWu8vpyzkkOAAcYnWGM1HdGzqSqhZQfwApzLivC2d-PYIWIkBVCNdkFeyk9IIQZR-oT2MWYICaZWoH23Jgp6myh7v39ONgxw-Cgm0aTfRh1Dy9_rmGns4Y5QD3qHAZvyvbdrzWckh_voYabf0_Jm1S1OtkOdj7lEOfbcAid7T-DHaf7ZL9sx33w5-ry98VNdfvjen1xflsZjnmueE1oKVWotkywc5q1Ne8EmgepkLOUyFYJ0omWlKUitFbCsFbhDtUOU7oPTpa4mxgeJ5tyM_hkbN_r0YYpNVLK8u6asCKP35SCcFpSonchkVhSptT7EDNaE04KPHwFH8IUyz_P9XFEpaBzfacLMjGkFK1rNtEPOj41GDVzxxtGmqXjxX7bBpzawXYvctviAo62QKfSOBf1aHz67yTnDM_q66K8tfblcMnxDNiHt30</recordid><startdate>20001101</startdate><enddate>20001101</enddate><creator>Studholme, C.</creator><creator>Constable, R.T.</creator><creator>Duncan, J.S.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20001101</creationdate><title>Accurate alignment of functional EPI data to anatomical MRI using a physics-based distortion model</title><author>Studholme, C. ; Constable, R.T. ; Duncan, J.S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c515t-562306279b6231ffa4b65d704b65890fe328b972d7b290f923697c4b91d06f133</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Algorithms</topic><topic>Anatomical structure</topic><topic>Biological and medical sciences</topic><topic>Brain</topic><topic>Computed tomography</topic><topic>Distortion</topic><topic>Humans</topic><topic>Image processing</topic><topic>Investigative techniques, diagnostic techniques (general aspects)</topic><topic>Magnetic field measurement</topic><topic>Magnetic fields</topic><topic>Magnetic Resonance Imaging</topic><topic>Magnetic susceptibility</topic><topic>Mathematical techniques</topic><topic>Medical sciences</topic><topic>Models, Anatomic</topic><topic>Models, Theoretical</topic><topic>Mutual information</topic><topic>Nervous system</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Phantoms, Imaging</topic><topic>Physical Phenomena</topic><topic>Physics</topic><topic>Radiodiagnosis. Nmr imagery. Nmr spectrometry</topic><topic>Radiology</topic><topic>Reproducibility of Results</topic><topic>Studies</topic><topic>Tissue</topic><toplevel>online_resources</toplevel><creatorcontrib>Studholme, C.</creatorcontrib><creatorcontrib>Constable, R.T.</creatorcontrib><creatorcontrib>Duncan, J.S.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Nursing & Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on medical imaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Studholme, C.</au><au>Constable, R.T.</au><au>Duncan, J.S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Accurate alignment of functional EPI data to anatomical MRI using a physics-based distortion model</atitle><jtitle>IEEE transactions on medical imaging</jtitle><stitle>TMI</stitle><addtitle>IEEE Trans Med Imaging</addtitle><date>2000-11-01</date><risdate>2000</risdate><volume>19</volume><issue>11</issue><spage>1115</spage><epage>1127</epage><pages>1115-1127</pages><issn>0278-0062</issn><eissn>1558-254X</eissn><coden>ITMID4</coden><abstract>Mapping of functional magnetic resonance imaging (fMRI) to conventional anatomical MRI is a valuable step in the interpretation of fMRI activations. One of the main limits on the accuracy of this alignment arises from differences in the geometric distortion induced by magnetic field inhomogeneity. This paper describes an approach to the registration of echo planar image (EPI) data to conventional anatomical images which takes into account this difference in geometric distortion. The authors make use of an additional spin echo EPI image and use the known signal conservation in spin echo distortion to derive a specialized multimodality nonrigid registration algorithm. They also examine a plausible modification using log-intensity evaluation of the criterion to provide increased sensitivity in areas of low EPI signal. A phantom-based imaging experiment is used to evaluate the behavior of the different criteria, comparing nonrigid displacement estimates to those provided by a magnetic field mapping acquisition. The algorithm is then applied to a range of nine brain imaging studies illustrating global and local improvement in the anatomical alignment and localization of fMRI activations.</abstract><cop>New York, NY</cop><pub>IEEE</pub><pmid>11204849</pmid><doi>10.1109/42.896788</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0278-0062 |
ispartof | IEEE transactions on medical imaging, 2000-11, Vol.19 (11), p.1115-1127 |
issn | 0278-0062 1558-254X |
language | eng |
recordid | cdi_ieee_primary_896788 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Anatomical structure Biological and medical sciences Brain Computed tomography Distortion Humans Image processing Investigative techniques, diagnostic techniques (general aspects) Magnetic field measurement Magnetic fields Magnetic Resonance Imaging Magnetic susceptibility Mathematical techniques Medical sciences Models, Anatomic Models, Theoretical Mutual information Nervous system NMR Nuclear magnetic resonance Phantoms, Imaging Physical Phenomena Physics Radiodiagnosis. Nmr imagery. Nmr spectrometry Radiology Reproducibility of Results Studies Tissue |
title | Accurate alignment of functional EPI data to anatomical MRI using a physics-based distortion model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T12%3A50%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Accurate%20alignment%20of%20functional%20EPI%20data%20to%20anatomical%20MRI%20using%20a%20physics-based%20distortion%20model&rft.jtitle=IEEE%20transactions%20on%20medical%20imaging&rft.au=Studholme,%20C.&rft.date=2000-11-01&rft.volume=19&rft.issue=11&rft.spage=1115&rft.epage=1127&rft.pages=1115-1127&rft.issn=0278-0062&rft.eissn=1558-254X&rft.coden=ITMID4&rft_id=info:doi/10.1109/42.896788&rft_dat=%3Cproquest_RIE%3E2434354991%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=885038734&rft_id=info:pmid/11204849&rft_ieee_id=896788&rfr_iscdi=true |