On the Lengths of Divisible Codes

In this article, the effective lengths of all q^{r} -divisible linear codes over \mathbb {F}_{q} with a non-negative integer r are determined. For that purpose, the S_{q}(r) -adic expansion of an integer n is introduced. It is shown that there exists a q^{r} -divisible \mathbb {F}_{q} -lin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on information theory 2020-07, Vol.66 (7), p.4051-4060
Hauptverfasser: Kiermaier, Michael, Kurz, Sascha
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4060
container_issue 7
container_start_page 4051
container_title IEEE transactions on information theory
container_volume 66
creator Kiermaier, Michael
Kurz, Sascha
description In this article, the effective lengths of all q^{r} -divisible linear codes over \mathbb {F}_{q} with a non-negative integer r are determined. For that purpose, the S_{q}(r) -adic expansion of an integer n is introduced. It is shown that there exists a q^{r} -divisible \mathbb {F}_{q} -linear code of effective length n if and only if the leading coefficient of the S_{q}(r) -adic expansion of n is non-negative. Furthermore, the maximum weight of a q^{r} -divisible code of effective length n is at most \sigma q^{r} , where \sigma denotes the cross-sum of the S_{q}(r) -adic expansion of n . This result has applications in Galois geometries. A recent theorem of Năstase and Sissokho on the maximum size of a partial spread follows as a corollary. Furthermore, we get an improvement of the Johnson bound for constant dimension subspace codes.
doi_str_mv 10.1109/TIT.2020.2968832
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_8966309</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8966309</ieee_id><sourcerecordid>2415992375</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-9891e630130f6de824713d5a8459609c047f4a119137c3e58000296a059ba90a3</originalsourceid><addsrcrecordid>eNo9kE1Lw0AQhhdRMFbvgpeI59SZ_Uh2jlK_CoVe6nnZJhObUpOaTQX_vVtSPA0Dzzvz8ghxizBFBHpczVdTCRKmknJrlTwTCRpTZJQbfS4SALQZaW0vxVUI27hqgzIR98s2HTacLrj9HDYh7er0uflpQrPecTrrKg7X4qL2u8A3pzkRH68vq9l7tli-zWdPi6yUhENGlpBzBaigziu2UheoKuOtNpQDlaCLWntEQlWUio0FgFjVg6G1J_BqIh7Gu_u--z5wGNy2O_RtfOmkRkMkVWEiBSNV9l0IPddu3zdfvv91CO4owkUR7ijCnUTEyN0YaZj5H7eUx7ak_gBUElUY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2415992375</pqid></control><display><type>article</type><title>On the Lengths of Divisible Codes</title><source>IEEE Electronic Library (IEL)</source><creator>Kiermaier, Michael ; Kurz, Sascha</creator><creatorcontrib>Kiermaier, Michael ; Kurz, Sascha</creatorcontrib><description><![CDATA[In this article, the effective lengths of all <inline-formula> <tex-math notation="LaTeX">q^{r} </tex-math></inline-formula>-divisible linear codes over <inline-formula> <tex-math notation="LaTeX">\mathbb {F}_{q} </tex-math></inline-formula> with a non-negative integer <inline-formula> <tex-math notation="LaTeX">r </tex-math></inline-formula> are determined. For that purpose, the <inline-formula> <tex-math notation="LaTeX">S_{q}(r) </tex-math></inline-formula>-adic expansion of an integer <inline-formula> <tex-math notation="LaTeX">n </tex-math></inline-formula> is introduced. It is shown that there exists a <inline-formula> <tex-math notation="LaTeX">q^{r} </tex-math></inline-formula>-divisible <inline-formula> <tex-math notation="LaTeX">\mathbb {F}_{q} </tex-math></inline-formula>-linear code of effective length <inline-formula> <tex-math notation="LaTeX">n </tex-math></inline-formula> if and only if the leading coefficient of the <inline-formula> <tex-math notation="LaTeX">S_{q}(r) </tex-math></inline-formula>-adic expansion of <inline-formula> <tex-math notation="LaTeX">n </tex-math></inline-formula> is non-negative. Furthermore, the maximum weight of a <inline-formula> <tex-math notation="LaTeX">q^{r} </tex-math></inline-formula>-divisible code of effective length <inline-formula> <tex-math notation="LaTeX">n </tex-math></inline-formula> is at most <inline-formula> <tex-math notation="LaTeX">\sigma q^{r} </tex-math></inline-formula>, where <inline-formula> <tex-math notation="LaTeX">\sigma </tex-math></inline-formula> denotes the cross-sum of the <inline-formula> <tex-math notation="LaTeX">S_{q}(r) </tex-math></inline-formula>-adic expansion of <inline-formula> <tex-math notation="LaTeX">n </tex-math></inline-formula>. This result has applications in Galois geometries. A recent theorem of Năstase and Sissokho on the maximum size of a partial spread follows as a corollary. Furthermore, we get an improvement of the Johnson bound for constant dimension subspace codes.]]></description><identifier>ISSN: 0018-9448</identifier><identifier>EISSN: 1557-9654</identifier><identifier>DOI: 10.1109/TIT.2020.2968832</identifier><identifier>CODEN: IETTAW</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Codes ; constant dimension subspace codes ; Divisible codes ; Hamming weight ; Integers ; Lattices ; Linear codes ; partial spreads ; Projective geometry ; Thermal expansion ; Upper bound</subject><ispartof>IEEE transactions on information theory, 2020-07, Vol.66 (7), p.4051-4060</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-9891e630130f6de824713d5a8459609c047f4a119137c3e58000296a059ba90a3</citedby><cites>FETCH-LOGICAL-c291t-9891e630130f6de824713d5a8459609c047f4a119137c3e58000296a059ba90a3</cites><orcidid>0000-0002-5901-4381 ; 0000-0003-4597-2041</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8966309$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8966309$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Kiermaier, Michael</creatorcontrib><creatorcontrib>Kurz, Sascha</creatorcontrib><title>On the Lengths of Divisible Codes</title><title>IEEE transactions on information theory</title><addtitle>TIT</addtitle><description><![CDATA[In this article, the effective lengths of all <inline-formula> <tex-math notation="LaTeX">q^{r} </tex-math></inline-formula>-divisible linear codes over <inline-formula> <tex-math notation="LaTeX">\mathbb {F}_{q} </tex-math></inline-formula> with a non-negative integer <inline-formula> <tex-math notation="LaTeX">r </tex-math></inline-formula> are determined. For that purpose, the <inline-formula> <tex-math notation="LaTeX">S_{q}(r) </tex-math></inline-formula>-adic expansion of an integer <inline-formula> <tex-math notation="LaTeX">n </tex-math></inline-formula> is introduced. It is shown that there exists a <inline-formula> <tex-math notation="LaTeX">q^{r} </tex-math></inline-formula>-divisible <inline-formula> <tex-math notation="LaTeX">\mathbb {F}_{q} </tex-math></inline-formula>-linear code of effective length <inline-formula> <tex-math notation="LaTeX">n </tex-math></inline-formula> if and only if the leading coefficient of the <inline-formula> <tex-math notation="LaTeX">S_{q}(r) </tex-math></inline-formula>-adic expansion of <inline-formula> <tex-math notation="LaTeX">n </tex-math></inline-formula> is non-negative. Furthermore, the maximum weight of a <inline-formula> <tex-math notation="LaTeX">q^{r} </tex-math></inline-formula>-divisible code of effective length <inline-formula> <tex-math notation="LaTeX">n </tex-math></inline-formula> is at most <inline-formula> <tex-math notation="LaTeX">\sigma q^{r} </tex-math></inline-formula>, where <inline-formula> <tex-math notation="LaTeX">\sigma </tex-math></inline-formula> denotes the cross-sum of the <inline-formula> <tex-math notation="LaTeX">S_{q}(r) </tex-math></inline-formula>-adic expansion of <inline-formula> <tex-math notation="LaTeX">n </tex-math></inline-formula>. This result has applications in Galois geometries. A recent theorem of Năstase and Sissokho on the maximum size of a partial spread follows as a corollary. Furthermore, we get an improvement of the Johnson bound for constant dimension subspace codes.]]></description><subject>Codes</subject><subject>constant dimension subspace codes</subject><subject>Divisible codes</subject><subject>Hamming weight</subject><subject>Integers</subject><subject>Lattices</subject><subject>Linear codes</subject><subject>partial spreads</subject><subject>Projective geometry</subject><subject>Thermal expansion</subject><subject>Upper bound</subject><issn>0018-9448</issn><issn>1557-9654</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1Lw0AQhhdRMFbvgpeI59SZ_Uh2jlK_CoVe6nnZJhObUpOaTQX_vVtSPA0Dzzvz8ghxizBFBHpczVdTCRKmknJrlTwTCRpTZJQbfS4SALQZaW0vxVUI27hqgzIR98s2HTacLrj9HDYh7er0uflpQrPecTrrKg7X4qL2u8A3pzkRH68vq9l7tli-zWdPi6yUhENGlpBzBaigziu2UheoKuOtNpQDlaCLWntEQlWUio0FgFjVg6G1J_BqIh7Gu_u--z5wGNy2O_RtfOmkRkMkVWEiBSNV9l0IPddu3zdfvv91CO4owkUR7ijCnUTEyN0YaZj5H7eUx7ak_gBUElUY</recordid><startdate>20200701</startdate><enddate>20200701</enddate><creator>Kiermaier, Michael</creator><creator>Kurz, Sascha</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-5901-4381</orcidid><orcidid>https://orcid.org/0000-0003-4597-2041</orcidid></search><sort><creationdate>20200701</creationdate><title>On the Lengths of Divisible Codes</title><author>Kiermaier, Michael ; Kurz, Sascha</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-9891e630130f6de824713d5a8459609c047f4a119137c3e58000296a059ba90a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Codes</topic><topic>constant dimension subspace codes</topic><topic>Divisible codes</topic><topic>Hamming weight</topic><topic>Integers</topic><topic>Lattices</topic><topic>Linear codes</topic><topic>partial spreads</topic><topic>Projective geometry</topic><topic>Thermal expansion</topic><topic>Upper bound</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kiermaier, Michael</creatorcontrib><creatorcontrib>Kurz, Sascha</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on information theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kiermaier, Michael</au><au>Kurz, Sascha</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the Lengths of Divisible Codes</atitle><jtitle>IEEE transactions on information theory</jtitle><stitle>TIT</stitle><date>2020-07-01</date><risdate>2020</risdate><volume>66</volume><issue>7</issue><spage>4051</spage><epage>4060</epage><pages>4051-4060</pages><issn>0018-9448</issn><eissn>1557-9654</eissn><coden>IETTAW</coden><abstract><![CDATA[In this article, the effective lengths of all <inline-formula> <tex-math notation="LaTeX">q^{r} </tex-math></inline-formula>-divisible linear codes over <inline-formula> <tex-math notation="LaTeX">\mathbb {F}_{q} </tex-math></inline-formula> with a non-negative integer <inline-formula> <tex-math notation="LaTeX">r </tex-math></inline-formula> are determined. For that purpose, the <inline-formula> <tex-math notation="LaTeX">S_{q}(r) </tex-math></inline-formula>-adic expansion of an integer <inline-formula> <tex-math notation="LaTeX">n </tex-math></inline-formula> is introduced. It is shown that there exists a <inline-formula> <tex-math notation="LaTeX">q^{r} </tex-math></inline-formula>-divisible <inline-formula> <tex-math notation="LaTeX">\mathbb {F}_{q} </tex-math></inline-formula>-linear code of effective length <inline-formula> <tex-math notation="LaTeX">n </tex-math></inline-formula> if and only if the leading coefficient of the <inline-formula> <tex-math notation="LaTeX">S_{q}(r) </tex-math></inline-formula>-adic expansion of <inline-formula> <tex-math notation="LaTeX">n </tex-math></inline-formula> is non-negative. Furthermore, the maximum weight of a <inline-formula> <tex-math notation="LaTeX">q^{r} </tex-math></inline-formula>-divisible code of effective length <inline-formula> <tex-math notation="LaTeX">n </tex-math></inline-formula> is at most <inline-formula> <tex-math notation="LaTeX">\sigma q^{r} </tex-math></inline-formula>, where <inline-formula> <tex-math notation="LaTeX">\sigma </tex-math></inline-formula> denotes the cross-sum of the <inline-formula> <tex-math notation="LaTeX">S_{q}(r) </tex-math></inline-formula>-adic expansion of <inline-formula> <tex-math notation="LaTeX">n </tex-math></inline-formula>. This result has applications in Galois geometries. A recent theorem of Năstase and Sissokho on the maximum size of a partial spread follows as a corollary. Furthermore, we get an improvement of the Johnson bound for constant dimension subspace codes.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIT.2020.2968832</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-5901-4381</orcidid><orcidid>https://orcid.org/0000-0003-4597-2041</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9448
ispartof IEEE transactions on information theory, 2020-07, Vol.66 (7), p.4051-4060
issn 0018-9448
1557-9654
language eng
recordid cdi_ieee_primary_8966309
source IEEE Electronic Library (IEL)
subjects Codes
constant dimension subspace codes
Divisible codes
Hamming weight
Integers
Lattices
Linear codes
partial spreads
Projective geometry
Thermal expansion
Upper bound
title On the Lengths of Divisible Codes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T22%3A59%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20Lengths%20of%20Divisible%20Codes&rft.jtitle=IEEE%20transactions%20on%20information%20theory&rft.au=Kiermaier,%20Michael&rft.date=2020-07-01&rft.volume=66&rft.issue=7&rft.spage=4051&rft.epage=4060&rft.pages=4051-4060&rft.issn=0018-9448&rft.eissn=1557-9654&rft.coden=IETTAW&rft_id=info:doi/10.1109/TIT.2020.2968832&rft_dat=%3Cproquest_RIE%3E2415992375%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2415992375&rft_id=info:pmid/&rft_ieee_id=8966309&rfr_iscdi=true