On the Lengths of Divisible Codes
In this article, the effective lengths of all q^{r} -divisible linear codes over \mathbb {F}_{q} with a non-negative integer r are determined. For that purpose, the S_{q}(r) -adic expansion of an integer n is introduced. It is shown that there exists a q^{r} -divisible \mathbb {F}_{q} -lin...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on information theory 2020-07, Vol.66 (7), p.4051-4060 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4060 |
---|---|
container_issue | 7 |
container_start_page | 4051 |
container_title | IEEE transactions on information theory |
container_volume | 66 |
creator | Kiermaier, Michael Kurz, Sascha |
description | In this article, the effective lengths of all q^{r} -divisible linear codes over \mathbb {F}_{q} with a non-negative integer r are determined. For that purpose, the S_{q}(r) -adic expansion of an integer n is introduced. It is shown that there exists a q^{r} -divisible \mathbb {F}_{q} -linear code of effective length n if and only if the leading coefficient of the S_{q}(r) -adic expansion of n is non-negative. Furthermore, the maximum weight of a q^{r} -divisible code of effective length n is at most \sigma q^{r} , where \sigma denotes the cross-sum of the S_{q}(r) -adic expansion of n . This result has applications in Galois geometries. A recent theorem of Năstase and Sissokho on the maximum size of a partial spread follows as a corollary. Furthermore, we get an improvement of the Johnson bound for constant dimension subspace codes. |
doi_str_mv | 10.1109/TIT.2020.2968832 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_8966309</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8966309</ieee_id><sourcerecordid>2415992375</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-9891e630130f6de824713d5a8459609c047f4a119137c3e58000296a059ba90a3</originalsourceid><addsrcrecordid>eNo9kE1Lw0AQhhdRMFbvgpeI59SZ_Uh2jlK_CoVe6nnZJhObUpOaTQX_vVtSPA0Dzzvz8ghxizBFBHpczVdTCRKmknJrlTwTCRpTZJQbfS4SALQZaW0vxVUI27hqgzIR98s2HTacLrj9HDYh7er0uflpQrPecTrrKg7X4qL2u8A3pzkRH68vq9l7tli-zWdPi6yUhENGlpBzBaigziu2UheoKuOtNpQDlaCLWntEQlWUio0FgFjVg6G1J_BqIh7Gu_u--z5wGNy2O_RtfOmkRkMkVWEiBSNV9l0IPddu3zdfvv91CO4owkUR7ijCnUTEyN0YaZj5H7eUx7ak_gBUElUY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2415992375</pqid></control><display><type>article</type><title>On the Lengths of Divisible Codes</title><source>IEEE Electronic Library (IEL)</source><creator>Kiermaier, Michael ; Kurz, Sascha</creator><creatorcontrib>Kiermaier, Michael ; Kurz, Sascha</creatorcontrib><description><![CDATA[In this article, the effective lengths of all <inline-formula> <tex-math notation="LaTeX">q^{r} </tex-math></inline-formula>-divisible linear codes over <inline-formula> <tex-math notation="LaTeX">\mathbb {F}_{q} </tex-math></inline-formula> with a non-negative integer <inline-formula> <tex-math notation="LaTeX">r </tex-math></inline-formula> are determined. For that purpose, the <inline-formula> <tex-math notation="LaTeX">S_{q}(r) </tex-math></inline-formula>-adic expansion of an integer <inline-formula> <tex-math notation="LaTeX">n </tex-math></inline-formula> is introduced. It is shown that there exists a <inline-formula> <tex-math notation="LaTeX">q^{r} </tex-math></inline-formula>-divisible <inline-formula> <tex-math notation="LaTeX">\mathbb {F}_{q} </tex-math></inline-formula>-linear code of effective length <inline-formula> <tex-math notation="LaTeX">n </tex-math></inline-formula> if and only if the leading coefficient of the <inline-formula> <tex-math notation="LaTeX">S_{q}(r) </tex-math></inline-formula>-adic expansion of <inline-formula> <tex-math notation="LaTeX">n </tex-math></inline-formula> is non-negative. Furthermore, the maximum weight of a <inline-formula> <tex-math notation="LaTeX">q^{r} </tex-math></inline-formula>-divisible code of effective length <inline-formula> <tex-math notation="LaTeX">n </tex-math></inline-formula> is at most <inline-formula> <tex-math notation="LaTeX">\sigma q^{r} </tex-math></inline-formula>, where <inline-formula> <tex-math notation="LaTeX">\sigma </tex-math></inline-formula> denotes the cross-sum of the <inline-formula> <tex-math notation="LaTeX">S_{q}(r) </tex-math></inline-formula>-adic expansion of <inline-formula> <tex-math notation="LaTeX">n </tex-math></inline-formula>. This result has applications in Galois geometries. A recent theorem of Năstase and Sissokho on the maximum size of a partial spread follows as a corollary. Furthermore, we get an improvement of the Johnson bound for constant dimension subspace codes.]]></description><identifier>ISSN: 0018-9448</identifier><identifier>EISSN: 1557-9654</identifier><identifier>DOI: 10.1109/TIT.2020.2968832</identifier><identifier>CODEN: IETTAW</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Codes ; constant dimension subspace codes ; Divisible codes ; Hamming weight ; Integers ; Lattices ; Linear codes ; partial spreads ; Projective geometry ; Thermal expansion ; Upper bound</subject><ispartof>IEEE transactions on information theory, 2020-07, Vol.66 (7), p.4051-4060</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-9891e630130f6de824713d5a8459609c047f4a119137c3e58000296a059ba90a3</citedby><cites>FETCH-LOGICAL-c291t-9891e630130f6de824713d5a8459609c047f4a119137c3e58000296a059ba90a3</cites><orcidid>0000-0002-5901-4381 ; 0000-0003-4597-2041</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8966309$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8966309$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Kiermaier, Michael</creatorcontrib><creatorcontrib>Kurz, Sascha</creatorcontrib><title>On the Lengths of Divisible Codes</title><title>IEEE transactions on information theory</title><addtitle>TIT</addtitle><description><![CDATA[In this article, the effective lengths of all <inline-formula> <tex-math notation="LaTeX">q^{r} </tex-math></inline-formula>-divisible linear codes over <inline-formula> <tex-math notation="LaTeX">\mathbb {F}_{q} </tex-math></inline-formula> with a non-negative integer <inline-formula> <tex-math notation="LaTeX">r </tex-math></inline-formula> are determined. For that purpose, the <inline-formula> <tex-math notation="LaTeX">S_{q}(r) </tex-math></inline-formula>-adic expansion of an integer <inline-formula> <tex-math notation="LaTeX">n </tex-math></inline-formula> is introduced. It is shown that there exists a <inline-formula> <tex-math notation="LaTeX">q^{r} </tex-math></inline-formula>-divisible <inline-formula> <tex-math notation="LaTeX">\mathbb {F}_{q} </tex-math></inline-formula>-linear code of effective length <inline-formula> <tex-math notation="LaTeX">n </tex-math></inline-formula> if and only if the leading coefficient of the <inline-formula> <tex-math notation="LaTeX">S_{q}(r) </tex-math></inline-formula>-adic expansion of <inline-formula> <tex-math notation="LaTeX">n </tex-math></inline-formula> is non-negative. Furthermore, the maximum weight of a <inline-formula> <tex-math notation="LaTeX">q^{r} </tex-math></inline-formula>-divisible code of effective length <inline-formula> <tex-math notation="LaTeX">n </tex-math></inline-formula> is at most <inline-formula> <tex-math notation="LaTeX">\sigma q^{r} </tex-math></inline-formula>, where <inline-formula> <tex-math notation="LaTeX">\sigma </tex-math></inline-formula> denotes the cross-sum of the <inline-formula> <tex-math notation="LaTeX">S_{q}(r) </tex-math></inline-formula>-adic expansion of <inline-formula> <tex-math notation="LaTeX">n </tex-math></inline-formula>. This result has applications in Galois geometries. A recent theorem of Năstase and Sissokho on the maximum size of a partial spread follows as a corollary. Furthermore, we get an improvement of the Johnson bound for constant dimension subspace codes.]]></description><subject>Codes</subject><subject>constant dimension subspace codes</subject><subject>Divisible codes</subject><subject>Hamming weight</subject><subject>Integers</subject><subject>Lattices</subject><subject>Linear codes</subject><subject>partial spreads</subject><subject>Projective geometry</subject><subject>Thermal expansion</subject><subject>Upper bound</subject><issn>0018-9448</issn><issn>1557-9654</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1Lw0AQhhdRMFbvgpeI59SZ_Uh2jlK_CoVe6nnZJhObUpOaTQX_vVtSPA0Dzzvz8ghxizBFBHpczVdTCRKmknJrlTwTCRpTZJQbfS4SALQZaW0vxVUI27hqgzIR98s2HTacLrj9HDYh7er0uflpQrPecTrrKg7X4qL2u8A3pzkRH68vq9l7tli-zWdPi6yUhENGlpBzBaigziu2UheoKuOtNpQDlaCLWntEQlWUio0FgFjVg6G1J_BqIh7Gu_u--z5wGNy2O_RtfOmkRkMkVWEiBSNV9l0IPddu3zdfvv91CO4owkUR7ijCnUTEyN0YaZj5H7eUx7ak_gBUElUY</recordid><startdate>20200701</startdate><enddate>20200701</enddate><creator>Kiermaier, Michael</creator><creator>Kurz, Sascha</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-5901-4381</orcidid><orcidid>https://orcid.org/0000-0003-4597-2041</orcidid></search><sort><creationdate>20200701</creationdate><title>On the Lengths of Divisible Codes</title><author>Kiermaier, Michael ; Kurz, Sascha</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-9891e630130f6de824713d5a8459609c047f4a119137c3e58000296a059ba90a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Codes</topic><topic>constant dimension subspace codes</topic><topic>Divisible codes</topic><topic>Hamming weight</topic><topic>Integers</topic><topic>Lattices</topic><topic>Linear codes</topic><topic>partial spreads</topic><topic>Projective geometry</topic><topic>Thermal expansion</topic><topic>Upper bound</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kiermaier, Michael</creatorcontrib><creatorcontrib>Kurz, Sascha</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on information theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kiermaier, Michael</au><au>Kurz, Sascha</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the Lengths of Divisible Codes</atitle><jtitle>IEEE transactions on information theory</jtitle><stitle>TIT</stitle><date>2020-07-01</date><risdate>2020</risdate><volume>66</volume><issue>7</issue><spage>4051</spage><epage>4060</epage><pages>4051-4060</pages><issn>0018-9448</issn><eissn>1557-9654</eissn><coden>IETTAW</coden><abstract><![CDATA[In this article, the effective lengths of all <inline-formula> <tex-math notation="LaTeX">q^{r} </tex-math></inline-formula>-divisible linear codes over <inline-formula> <tex-math notation="LaTeX">\mathbb {F}_{q} </tex-math></inline-formula> with a non-negative integer <inline-formula> <tex-math notation="LaTeX">r </tex-math></inline-formula> are determined. For that purpose, the <inline-formula> <tex-math notation="LaTeX">S_{q}(r) </tex-math></inline-formula>-adic expansion of an integer <inline-formula> <tex-math notation="LaTeX">n </tex-math></inline-formula> is introduced. It is shown that there exists a <inline-formula> <tex-math notation="LaTeX">q^{r} </tex-math></inline-formula>-divisible <inline-formula> <tex-math notation="LaTeX">\mathbb {F}_{q} </tex-math></inline-formula>-linear code of effective length <inline-formula> <tex-math notation="LaTeX">n </tex-math></inline-formula> if and only if the leading coefficient of the <inline-formula> <tex-math notation="LaTeX">S_{q}(r) </tex-math></inline-formula>-adic expansion of <inline-formula> <tex-math notation="LaTeX">n </tex-math></inline-formula> is non-negative. Furthermore, the maximum weight of a <inline-formula> <tex-math notation="LaTeX">q^{r} </tex-math></inline-formula>-divisible code of effective length <inline-formula> <tex-math notation="LaTeX">n </tex-math></inline-formula> is at most <inline-formula> <tex-math notation="LaTeX">\sigma q^{r} </tex-math></inline-formula>, where <inline-formula> <tex-math notation="LaTeX">\sigma </tex-math></inline-formula> denotes the cross-sum of the <inline-formula> <tex-math notation="LaTeX">S_{q}(r) </tex-math></inline-formula>-adic expansion of <inline-formula> <tex-math notation="LaTeX">n </tex-math></inline-formula>. This result has applications in Galois geometries. A recent theorem of Năstase and Sissokho on the maximum size of a partial spread follows as a corollary. Furthermore, we get an improvement of the Johnson bound for constant dimension subspace codes.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIT.2020.2968832</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-5901-4381</orcidid><orcidid>https://orcid.org/0000-0003-4597-2041</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9448 |
ispartof | IEEE transactions on information theory, 2020-07, Vol.66 (7), p.4051-4060 |
issn | 0018-9448 1557-9654 |
language | eng |
recordid | cdi_ieee_primary_8966309 |
source | IEEE Electronic Library (IEL) |
subjects | Codes constant dimension subspace codes Divisible codes Hamming weight Integers Lattices Linear codes partial spreads Projective geometry Thermal expansion Upper bound |
title | On the Lengths of Divisible Codes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T22%3A59%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20Lengths%20of%20Divisible%20Codes&rft.jtitle=IEEE%20transactions%20on%20information%20theory&rft.au=Kiermaier,%20Michael&rft.date=2020-07-01&rft.volume=66&rft.issue=7&rft.spage=4051&rft.epage=4060&rft.pages=4051-4060&rft.issn=0018-9448&rft.eissn=1557-9654&rft.coden=IETTAW&rft_id=info:doi/10.1109/TIT.2020.2968832&rft_dat=%3Cproquest_RIE%3E2415992375%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2415992375&rft_id=info:pmid/&rft_ieee_id=8966309&rfr_iscdi=true |