On the Lengths of Divisible Codes
In this article, the effective lengths of all q^{r} -divisible linear codes over \mathbb {F}_{q} with a non-negative integer r are determined. For that purpose, the S_{q}(r) -adic expansion of an integer n is introduced. It is shown that there exists a q^{r} -divisible \mathbb {F}_{q} -lin...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on information theory 2020-07, Vol.66 (7), p.4051-4060 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this article, the effective lengths of all q^{r} -divisible linear codes over \mathbb {F}_{q} with a non-negative integer r are determined. For that purpose, the S_{q}(r) -adic expansion of an integer n is introduced. It is shown that there exists a q^{r} -divisible \mathbb {F}_{q} -linear code of effective length n if and only if the leading coefficient of the S_{q}(r) -adic expansion of n is non-negative. Furthermore, the maximum weight of a q^{r} -divisible code of effective length n is at most \sigma q^{r} , where \sigma denotes the cross-sum of the S_{q}(r) -adic expansion of n . This result has applications in Galois geometries. A recent theorem of Năstase and Sissokho on the maximum size of a partial spread follows as a corollary. Furthermore, we get an improvement of the Johnson bound for constant dimension subspace codes. |
---|---|
ISSN: | 0018-9448 1557-9654 |
DOI: | 10.1109/TIT.2020.2968832 |