Novelty Detection and Online Learning for Chunk Data Streams

Datastream analysis aims at extracting discriminative information for classification from continuously incoming samples. It is extremely challenging to detect novel data while incrementally updating the model efficiently and stably, especially for high-dimensional and/or large-scale data streams. Th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence 2021-07, Vol.43 (7), p.2400-2412
Hauptverfasser: Wang, Yi, Ding, Yi, He, Xiangjian, Fan, Xin, Lin, Chi, Li, Fengqi, Wang, Tianzhu, Luo, Zhongxuan, Luo, Jiebo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Datastream analysis aims at extracting discriminative information for classification from continuously incoming samples. It is extremely challenging to detect novel data while incrementally updating the model efficiently and stably, especially for high-dimensional and/or large-scale data streams. This paper proposes an efficient framework for novelty detection and incremental learning for unlabeled chunk data streams. First, an accurate factorization-free kernel discriminative analysis (FKDA-X) is put forward through solving a linear system in the kernel space. FKDA-X produces a Reproducing Kernel Hilbert Space (RKHS), in which unlabeled chunk data can be detected and classified by multiple known-classes in a single decision model with a deterministic classification boundary. Moreover, based on FKDA-X, two optimal methods FKDA-CX and FKDA-C are proposed. FKDA-CX uses the micro-cluster centers of original data as the input to achieve excellent performance in novelty detection. FKDA-C and incremental FKDA-C (IFKDA-C) using the class centers of original data as their input have extremely fast speed in online learning. Theoretical analysis and experimental validation on under-sampled and large-scale real-world datasets demonstrate that the proposed algorithms make it possible to learn unlabeled chunk data streams with significantly lower computational costs and comparable accuracies than the state-of-the-art approaches.
ISSN:0162-8828
1939-3539
2160-9292
DOI:10.1109/TPAMI.2020.2965531