Automated performance evaluation of range image segmentation

We have developed an automated framework for objectively evaluating the performance of region segmentation algorithms. This framework is demonstrated with range image data sets, but is applicable to any type of imagery. Parameters of the segmentation algorithm are tuned using training images. Images...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Jaesik Min, Powell, M.W., Bowyer, K.W.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We have developed an automated framework for objectively evaluating the performance of region segmentation algorithms. This framework is demonstrated with range image data sets, but is applicable to any type of imagery. Parameters of the segmentation algorithm are tuned using training images. Images and source code for the training process care publicly available. The trained parameters are then used to evaluate the algorithm on a (sequestered) test set. The primary performance metric is the average number of correctly segmented regions. Statistical tests are used to determine the significance of performance improvement over a baseline algorithm.
DOI:10.1109/WACV.2000.895418