Sound Events Recognition and Retrieval Using Multi-Convolutional-Channel Sparse Coding Convolutional Neural Networks
This article proposes two novel deep convolutional neural networks (CNN), which are called the sparse coding convolutional neural network (SC-CNN) and the multi-convolutional-channel SC-CNN (MSC-CNN), to address the sound event recognition and retrieval problem. Unlike the general framework of a CNN...
Gespeichert in:
Veröffentlicht in: | IEEE/ACM transactions on audio, speech, and language processing speech, and language processing, 2020, Vol.28, p.1875-1887 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This article proposes two novel deep convolutional neural networks (CNN), which are called the sparse coding convolutional neural network (SC-CNN) and the multi-convolutional-channel SC-CNN (MSC-CNN), to address the sound event recognition and retrieval problem. Unlike the general framework of a CNN, in which the feature learning process is performed hierarchically, the proposed framework models the whole memorization process in the human brain, including encoding, storage, and recollection. In particular, the MSC-CNN is designed to recognize multiple sound events that occur simultaneously. The experimental results indicate that the proposed SC-CNN and MSC-CNN outperforms the state-of-the-art systems in sound event recognition and retrieval. |
---|---|
ISSN: | 2329-9290 2329-9304 |
DOI: | 10.1109/TASLP.2020.2964959 |