On Lipschitz Bounds of General Convolutional Neural Networks
Many convolutional neural networks (CNN's) have a feed-forward structure. In this paper, we model a general framework for analyzing the Lipschitz bounds of CNN's and propose a linear program that estimates these bounds. Several CNN's, including the scattering networks, the AlexNet and...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on information theory 2020-03, Vol.66 (3), p.1738-1759 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Many convolutional neural networks (CNN's) have a feed-forward structure. In this paper, we model a general framework for analyzing the Lipschitz bounds of CNN's and propose a linear program that estimates these bounds. Several CNN's, including the scattering networks, the AlexNet and the GoogleNet, are studied numerically. In these practical numerical examples, estimations of local Lipschitz bounds are compared to these theoretical bounds. Based on the Lipschitz bounds, we next establish concentration inequalities for the output distribution with respect to a stationary random input signal. The Lipschitz bound is further used to perform nonlinear discriminant analysis that measures the separation between features of different classes. |
---|---|
ISSN: | 0018-9448 1557-9654 |
DOI: | 10.1109/TIT.2019.2961812 |