Using genetic algorithms for test case generation in path testing

Generic algorithms are inspired by Darwin's survival of the fittest theory. This paper discusses a genetic algorithm that can automatically generate test cases to test a selected path. This algorithm takes a selected path as a target and executes sequences of operators iteratively for test case...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Lin, Jin-Cherng, Yeh, Pu-Lin
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Generic algorithms are inspired by Darwin's survival of the fittest theory. This paper discusses a genetic algorithm that can automatically generate test cases to test a selected path. This algorithm takes a selected path as a target and executes sequences of operators iteratively for test cases to evolve. The evolved test case can lead the program execution to achieve the target path. A fitness function named SIMILARITY is defined to determine which test case should survive if the final test case has not been found.
ISSN:1081-7735
2377-5386
DOI:10.1109/ATS.2000.893632