Using genetic algorithms for test case generation in path testing
Generic algorithms are inspired by Darwin's survival of the fittest theory. This paper discusses a genetic algorithm that can automatically generate test cases to test a selected path. This algorithm takes a selected path as a target and executes sequences of operators iteratively for test case...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Generic algorithms are inspired by Darwin's survival of the fittest theory. This paper discusses a genetic algorithm that can automatically generate test cases to test a selected path. This algorithm takes a selected path as a target and executes sequences of operators iteratively for test cases to evolve. The evolved test case can lead the program execution to achieve the target path. A fitness function named SIMILARITY is defined to determine which test case should survive if the final test case has not been found. |
---|---|
ISSN: | 1081-7735 2377-5386 |
DOI: | 10.1109/ATS.2000.893632 |