FFDNet-Based Channel Estimation for Massive MIMO Visible Light Communication Systems

Channel estimation is of crucial importance in massive multiple-input multiple-output (m-MIMO) visible light communication (VLC) systems. In order to tackle this problem, a fast and flexible denoising convolutional neural network (FFDNet)-based channel estimation scheme for m-MIMO VLC systems was pr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE wireless communications letters 2020-03, Vol.9 (3), p.340-343
Hauptverfasser: Gao, Zhipeng, Wang, Yuhao, Liu, Xiaodong, Zhou, Fuhui, Wong, Kat-Kit
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Channel estimation is of crucial importance in massive multiple-input multiple-output (m-MIMO) visible light communication (VLC) systems. In order to tackle this problem, a fast and flexible denoising convolutional neural network (FFDNet)-based channel estimation scheme for m-MIMO VLC systems was proposed. The channel matrix of the m-MIMO VLC channel is identified as a two-dimensional natural image since the channel has the characteristic of sparsity. A deep learning-enabled image denoising network FFDNet is exploited to learn from a large number of training data and to estimate the m-MIMO VLC channel. Simulation results demonstrate that our proposed channel estimation based on the FFDNet significantly outperforms the benchmark scheme based on minimum mean square error.
ISSN:2162-2337
2162-2345
DOI:10.1109/LWC.2019.2954511