Euclidean and Hermitian Hulls of MDS Codes and Their Applications to EAQECCs

In this paper, we construct several classes of maximum distance separable (MDS) codes via generalized Reed-Solomon (GRS) codes and extended GRS codes, where we can determine the dimensions of their Euclidean hulls or Hermitian hulls. It turns out that the dimensions of Euclidean hulls or Hermitian h...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on information theory 2020-06, Vol.66 (6), p.3527-3537
Hauptverfasser: Fang, Weijun, Fu, Fang-Wei, Li, Lanqiang, Zhu, Shixin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we construct several classes of maximum distance separable (MDS) codes via generalized Reed-Solomon (GRS) codes and extended GRS codes, where we can determine the dimensions of their Euclidean hulls or Hermitian hulls. It turns out that the dimensions of Euclidean hulls or Hermitian hulls of the codes in our constructions can take all or almost all possible values. As a consequence, we can apply our results to entanglement-assisted quantum error-correcting codes (EAQECCs) and obtain several new families of MDS EAQECCs with flexible parameters. The required number of maximally entangled states of these MDS EAQECCs can take all or almost all possible values. Moreover, several new classes of q-ary MDS EAQECCs of length {n} > {q}+1 are also obtained.
ISSN:0018-9448
1557-9654
DOI:10.1109/TIT.2019.2950245