Analytical Study of the Impacts of Stochastic Load Fluctuation on the Dynamic Voltage Stability Margin Using Bifurcation Theory

This paper studies the impacts of stochastic load fluctuations, namely the fluctuation intensity and the load power variation speed, on power system dynamic voltage stability. Additionally, the trade-off relationship between the two parameters is revealed, which provides important insights regarding...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on circuits and systems. I, Regular papers Regular papers, 2020-04, Vol.67 (4), p.1286-1295
Hauptverfasser: Pierrou, Georgia, Wang, Xiaozhe
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper studies the impacts of stochastic load fluctuations, namely the fluctuation intensity and the load power variation speed, on power system dynamic voltage stability. Additionally, the trade-off relationship between the two parameters is revealed, which provides important insights regarding the potential of using energy storage to maintain voltage stability under high uncertainty. To this end, Stochastic Differential-Algebraic Equations (SDAEs) are used to model the stochastic load variation; bifurcation analysis is carried out to explain the influence of stochasticity. Numerical study and Monte Carlo simulations on the IEEE 14-bus system demonstrate that a larger fluctuation intensity or a slower load power variation speed may lead to a smaller voltage stability margin. To the best of authors' knowledge, this work uncovers the impacts of the time evolution property of the driving parameters, i.e., the load power variation speed and its trade off effect with the fluctuation intensity on the size of the dynamic voltage stability margin.
ISSN:1549-8328
1558-0806
DOI:10.1109/TCSI.2019.2943509