Four wheel independent drive electric vehicle lateral stability control strategy

In this paper, a kind of lateral stability control strategy is put forward about the four wheel independent drive electric vehicle. The design of control system adopts hierarchical structure. Unlike the previous control strategy, this paper introduces a method which is the combination of sliding mod...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE/CAA journal of automatica sinica 2020-11, Vol.7 (6), p.1542-1554
Hauptverfasser: Tian, Yantao, Cao, Xuanhao, Wang, Xiaoyu, Zhao, Yanbo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, a kind of lateral stability control strategy is put forward about the four wheel independent drive electric vehicle. The design of control system adopts hierarchical structure. Unlike the previous control strategy, this paper introduces a method which is the combination of sliding mode control and optimal allocation algorithm. According to the driver&#x02BC s operation commands &#x0028 steering angle and speed &#x0029 , the steady state responses of the sideslip angle and yaw rate are obtained. Based on this, the reference model is built. Upper controller adopts the sliding mode control principle to obtain the desired yawing moment demand. Lower controller is designed to satisfy the desired yawing moment demand by optimal allocation of the tire longitudinal forces. Firstly, the optimization goal is built to minimize the actuator cost. Secondly, the weighted least-square method is used to design the tire longitudinal forces optimization distribution strategy under the constraint conditions of actuator and the friction oval. Beyond that, when the optimal allocation algorithm is not applied, a method of axial load ratio distribution is adopted. Finally, CarSim associated with Simulink simulation experiments are designed under the conditions of different velocities and different pavements. The simulation results show that the control strategy designed in this paper has a good following effect comparing with the reference model and the sideslip angle &#x03B2 is controlled within a small rang at the same time. Beyond that, based on the optimal distribution mode, the electromagnetic torque phase of each wheel can follow the trend of the vertical force of the tire, which shows the effectiveness of the optimal distribution algorithm.
ISSN:2329-9266
2329-9274
DOI:10.1109/JAS.2019.1911729