Freewheeling Diode Technology With Low Loss and High Dynamic Ruggedness in High-Speed IGBT Applications

In this article, we investigated two typical destruction modes during reverse recovery in power diodes. These phenomena originated, while using numerical simulation analysis, in snap-off behavior and local heating during the recovery period in modern high-frequency power application. A relaxing elec...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on electron devices 2019-11, Vol.66 (11), p.4842-4849
Hauptverfasser: Nakamura, Katsumi, Masuoka, Fumihito, Nishii, Akito, Nishizawa, Shin-ichi, Furukawa, Akihiko
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this article, we investigated two typical destruction modes during reverse recovery in power diodes. These phenomena originated, while using numerical simulation analysis, in snap-off behavior and local heating during the recovery period in modern high-frequency power application. A relaxing electric field and optimizing electron injection efficiency at the cathode region prevent the above behavior. These improvements are the result of controlling the carrier plasma layer and its interaction with the electric field in the drift region during the recovery process. This article demonstrates the effective diode technology that achieves superior dynamic ruggedness with low overall loss.
ISSN:0018-9383
1557-9646
DOI:10.1109/TED.2019.2941710