Physics-Guided Neural Modeling for Low-Dimensional Thermoelectric Module

A generic framework for combining the thermoelectric (TE) transport in low dimensional materials with neural networks is presented to advance the predictions of thermoelectric module. By training the integrand of transport integrals and implementing into circuit simulators, this approach directly pr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE electron device letters 2019-11, Vol.40 (11), p.1812-1815
1. Verfasser: Lee, Jonghwan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A generic framework for combining the thermoelectric (TE) transport in low dimensional materials with neural networks is presented to advance the predictions of thermoelectric module. By training the integrand of transport integrals and implementing into circuit simulators, this approach directly predicts the TE performance under various electronic density of states (DOS) for low dimensional TE modules. This approach enables efficient modeling and produces physically meaningful results for thermoelectric properties.
ISSN:0741-3106
1558-0563
DOI:10.1109/LED.2019.2944395