Rub-Impact Fault Diagnosis of Rotating Machinery Based on 1-D Convolutional Neural Networks
Rub-impact is a kind of serious malfunction, which often occurs in rotating machinery. The non-stationary rub-impact signals are always submerged in the background and noise signals, which makes it difficult to accurately diagnose the rubbing based on the hand-designed features extracted by the trad...
Gespeichert in:
Veröffentlicht in: | IEEE sensors journal 2020-08, Vol.20 (15), p.8349-8363 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Rub-impact is a kind of serious malfunction, which often occurs in rotating machinery. The non-stationary rub-impact signals are always submerged in the background and noise signals, which makes it difficult to accurately diagnose the rubbing based on the hand-designed features extracted by the traditional methods. This paper presents a 1-D convolutional neural network (CNN) based approach to automatically learn useful features for rub-impact fault diagnosis from the raw vibration signals of a rotor system. The proposed model is trained on a dataset of vibration signals obtained from an industrial hydro turbine rotor. The results show that timely and accurate rub-impact fault detection can be achieved by a simple 1-D CNN configuration. |
---|---|
ISSN: | 1530-437X 1558-1748 |
DOI: | 10.1109/JSEN.2019.2944157 |