Memristive Quantum Computing Simulator

One of the most promising and powerful candidates for future computing is the notion of universal quantum computer. A vital advance towards this direction is the development of quantum simulators and their possible implementation either as standalone quantum systems or as compatible software for cla...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on nanotechnology 2019, Vol.18, p.1015-1022
Hauptverfasser: Karafyllidis, Ioannis G., Sirakoulis, Georgios Ch, Dimitrakis, Panagiotis
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1022
container_issue
container_start_page 1015
container_title IEEE transactions on nanotechnology
container_volume 18
creator Karafyllidis, Ioannis G.
Sirakoulis, Georgios Ch
Dimitrakis, Panagiotis
description One of the most promising and powerful candidates for future computing is the notion of universal quantum computer. A vital advance towards this direction is the development of quantum simulators and their possible implementation either as standalone quantum systems or as compatible software for classical computers with pros and cons. On the other hand, memristive computing has been proposed recently as a tentative unconventional computing scheme promoting the idea of information storage and processing in the same nanoelectronic device. In this paper we present a memristive quantum computing simulator by coupling quantum simulation principles with memristor aspects and enabling us to tackle the existing difficulties on qubit representation in conventional computing systems. For doing so, we utilize the memristances of identical memristors to represent in 3D the qubit state while its corresponding evolution is defined by the memristors input voltages. In particular, we introduce an appropriate correspondence among the aforementioned memristor voltages and the general qubit state rotation, i.e., the one-qubit quantum gates, and as such we reproduce the rotations imposed by the action of quantum gates in the 3D memristance space. Moreover, we also define the action of the CNOT two-qubit gate and simulate entanglement between two qubits paving the way towards the establishment of a universal set for quantum computing. Our results show that, memristor circuits can simulate effectively quantum computations.
doi_str_mv 10.1109/TNANO.2019.2941763
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_8846603</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8846603</ieee_id><sourcerecordid>2303979832</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-6301d081fa071779fb392a69687c0766636b42fb6fe6559eee25439031b2176a3</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMoWKt_QC8FwdvWSWYzSY5l8Qtqi1jBW8jWrGzpdmuyK_jvTW3xNO_h_Rgexi45jDkHc7uYTWbzsQBuxsLkXBEesQFPKgPQ8jhpiZRxId9P2VmMK4DkkXrAbp59E-rY1d9-9NK7Tdc3o6Jttn1Xbz5Hr3XTr13XhnN2Url19BeHO2Rv93eL4jGbzh-eisk0Wwoju4wQ-AdoXjlQXClTlWiEI0NaLUEREVKZi6qkypOUxnsvZI4GkJciPeRwyK73vdvQfvU-dnbV9mGTJq1AQKOMRpFcYu9ahjbG4Cu7DXXjwo_lYHc87B8Pu-NhDzxS6GofqtPsf0DrnAgQfwF0rlnk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2303979832</pqid></control><display><type>article</type><title>Memristive Quantum Computing Simulator</title><source>IEEE Electronic Library (IEL)</source><creator>Karafyllidis, Ioannis G. ; Sirakoulis, Georgios Ch ; Dimitrakis, Panagiotis</creator><creatorcontrib>Karafyllidis, Ioannis G. ; Sirakoulis, Georgios Ch ; Dimitrakis, Panagiotis</creatorcontrib><description>One of the most promising and powerful candidates for future computing is the notion of universal quantum computer. A vital advance towards this direction is the development of quantum simulators and their possible implementation either as standalone quantum systems or as compatible software for classical computers with pros and cons. On the other hand, memristive computing has been proposed recently as a tentative unconventional computing scheme promoting the idea of information storage and processing in the same nanoelectronic device. In this paper we present a memristive quantum computing simulator by coupling quantum simulation principles with memristor aspects and enabling us to tackle the existing difficulties on qubit representation in conventional computing systems. For doing so, we utilize the memristances of identical memristors to represent in 3D the qubit state while its corresponding evolution is defined by the memristors input voltages. In particular, we introduce an appropriate correspondence among the aforementioned memristor voltages and the general qubit state rotation, i.e., the one-qubit quantum gates, and as such we reproduce the rotations imposed by the action of quantum gates in the 3D memristance space. Moreover, we also define the action of the CNOT two-qubit gate and simulate entanglement between two qubits paving the way towards the establishment of a universal set for quantum computing. Our results show that, memristor circuits can simulate effectively quantum computations.</description><identifier>ISSN: 1536-125X</identifier><identifier>EISSN: 1941-0085</identifier><identifier>DOI: 10.1109/TNANO.2019.2941763</identifier><identifier>CODEN: ITNECU</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Computer simulation ; Flight simulators ; Information storage ; Logic gates ; Memristors ; Nanoelectronics ; Nanoscale devices ; Nanotechnology devices ; Quantum computers ; Quantum computing ; Quantum entanglement ; Quantum simulators ; Qubit ; Qubits ; Qubits (quantum computing) ; Software ; Three-dimensional displays</subject><ispartof>IEEE transactions on nanotechnology, 2019, Vol.18, p.1015-1022</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-6301d081fa071779fb392a69687c0766636b42fb6fe6559eee25439031b2176a3</citedby><cites>FETCH-LOGICAL-c295t-6301d081fa071779fb392a69687c0766636b42fb6fe6559eee25439031b2176a3</cites><orcidid>0000-0001-8240-484X ; 0000-0002-4941-0487 ; 0000-0003-2079-5480</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8846603$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,4024,27923,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8846603$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Karafyllidis, Ioannis G.</creatorcontrib><creatorcontrib>Sirakoulis, Georgios Ch</creatorcontrib><creatorcontrib>Dimitrakis, Panagiotis</creatorcontrib><title>Memristive Quantum Computing Simulator</title><title>IEEE transactions on nanotechnology</title><addtitle>TNANO</addtitle><description>One of the most promising and powerful candidates for future computing is the notion of universal quantum computer. A vital advance towards this direction is the development of quantum simulators and their possible implementation either as standalone quantum systems or as compatible software for classical computers with pros and cons. On the other hand, memristive computing has been proposed recently as a tentative unconventional computing scheme promoting the idea of information storage and processing in the same nanoelectronic device. In this paper we present a memristive quantum computing simulator by coupling quantum simulation principles with memristor aspects and enabling us to tackle the existing difficulties on qubit representation in conventional computing systems. For doing so, we utilize the memristances of identical memristors to represent in 3D the qubit state while its corresponding evolution is defined by the memristors input voltages. In particular, we introduce an appropriate correspondence among the aforementioned memristor voltages and the general qubit state rotation, i.e., the one-qubit quantum gates, and as such we reproduce the rotations imposed by the action of quantum gates in the 3D memristance space. Moreover, we also define the action of the CNOT two-qubit gate and simulate entanglement between two qubits paving the way towards the establishment of a universal set for quantum computing. Our results show that, memristor circuits can simulate effectively quantum computations.</description><subject>Computer simulation</subject><subject>Flight simulators</subject><subject>Information storage</subject><subject>Logic gates</subject><subject>Memristors</subject><subject>Nanoelectronics</subject><subject>Nanoscale devices</subject><subject>Nanotechnology devices</subject><subject>Quantum computers</subject><subject>Quantum computing</subject><subject>Quantum entanglement</subject><subject>Quantum simulators</subject><subject>Qubit</subject><subject>Qubits</subject><subject>Qubits (quantum computing)</subject><subject>Software</subject><subject>Three-dimensional displays</subject><issn>1536-125X</issn><issn>1941-0085</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1LAzEQhoMoWKt_QC8FwdvWSWYzSY5l8Qtqi1jBW8jWrGzpdmuyK_jvTW3xNO_h_Rgexi45jDkHc7uYTWbzsQBuxsLkXBEesQFPKgPQ8jhpiZRxId9P2VmMK4DkkXrAbp59E-rY1d9-9NK7Tdc3o6Jttn1Xbz5Hr3XTr13XhnN2Url19BeHO2Rv93eL4jGbzh-eisk0Wwoju4wQ-AdoXjlQXClTlWiEI0NaLUEREVKZi6qkypOUxnsvZI4GkJciPeRwyK73vdvQfvU-dnbV9mGTJq1AQKOMRpFcYu9ahjbG4Cu7DXXjwo_lYHc87B8Pu-NhDzxS6GofqtPsf0DrnAgQfwF0rlnk</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Karafyllidis, Ioannis G.</creator><creator>Sirakoulis, Georgios Ch</creator><creator>Dimitrakis, Panagiotis</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-8240-484X</orcidid><orcidid>https://orcid.org/0000-0002-4941-0487</orcidid><orcidid>https://orcid.org/0000-0003-2079-5480</orcidid></search><sort><creationdate>2019</creationdate><title>Memristive Quantum Computing Simulator</title><author>Karafyllidis, Ioannis G. ; Sirakoulis, Georgios Ch ; Dimitrakis, Panagiotis</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-6301d081fa071779fb392a69687c0766636b42fb6fe6559eee25439031b2176a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Computer simulation</topic><topic>Flight simulators</topic><topic>Information storage</topic><topic>Logic gates</topic><topic>Memristors</topic><topic>Nanoelectronics</topic><topic>Nanoscale devices</topic><topic>Nanotechnology devices</topic><topic>Quantum computers</topic><topic>Quantum computing</topic><topic>Quantum entanglement</topic><topic>Quantum simulators</topic><topic>Qubit</topic><topic>Qubits</topic><topic>Qubits (quantum computing)</topic><topic>Software</topic><topic>Three-dimensional displays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Karafyllidis, Ioannis G.</creatorcontrib><creatorcontrib>Sirakoulis, Georgios Ch</creatorcontrib><creatorcontrib>Dimitrakis, Panagiotis</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on nanotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Karafyllidis, Ioannis G.</au><au>Sirakoulis, Georgios Ch</au><au>Dimitrakis, Panagiotis</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Memristive Quantum Computing Simulator</atitle><jtitle>IEEE transactions on nanotechnology</jtitle><stitle>TNANO</stitle><date>2019</date><risdate>2019</risdate><volume>18</volume><spage>1015</spage><epage>1022</epage><pages>1015-1022</pages><issn>1536-125X</issn><eissn>1941-0085</eissn><coden>ITNECU</coden><abstract>One of the most promising and powerful candidates for future computing is the notion of universal quantum computer. A vital advance towards this direction is the development of quantum simulators and their possible implementation either as standalone quantum systems or as compatible software for classical computers with pros and cons. On the other hand, memristive computing has been proposed recently as a tentative unconventional computing scheme promoting the idea of information storage and processing in the same nanoelectronic device. In this paper we present a memristive quantum computing simulator by coupling quantum simulation principles with memristor aspects and enabling us to tackle the existing difficulties on qubit representation in conventional computing systems. For doing so, we utilize the memristances of identical memristors to represent in 3D the qubit state while its corresponding evolution is defined by the memristors input voltages. In particular, we introduce an appropriate correspondence among the aforementioned memristor voltages and the general qubit state rotation, i.e., the one-qubit quantum gates, and as such we reproduce the rotations imposed by the action of quantum gates in the 3D memristance space. Moreover, we also define the action of the CNOT two-qubit gate and simulate entanglement between two qubits paving the way towards the establishment of a universal set for quantum computing. Our results show that, memristor circuits can simulate effectively quantum computations.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TNANO.2019.2941763</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-8240-484X</orcidid><orcidid>https://orcid.org/0000-0002-4941-0487</orcidid><orcidid>https://orcid.org/0000-0003-2079-5480</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1536-125X
ispartof IEEE transactions on nanotechnology, 2019, Vol.18, p.1015-1022
issn 1536-125X
1941-0085
language eng
recordid cdi_ieee_primary_8846603
source IEEE Electronic Library (IEL)
subjects Computer simulation
Flight simulators
Information storage
Logic gates
Memristors
Nanoelectronics
Nanoscale devices
Nanotechnology devices
Quantum computers
Quantum computing
Quantum entanglement
Quantum simulators
Qubit
Qubits
Qubits (quantum computing)
Software
Three-dimensional displays
title Memristive Quantum Computing Simulator
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T04%3A19%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Memristive%20Quantum%20Computing%20Simulator&rft.jtitle=IEEE%20transactions%20on%20nanotechnology&rft.au=Karafyllidis,%20Ioannis%20G.&rft.date=2019&rft.volume=18&rft.spage=1015&rft.epage=1022&rft.pages=1015-1022&rft.issn=1536-125X&rft.eissn=1941-0085&rft.coden=ITNECU&rft_id=info:doi/10.1109/TNANO.2019.2941763&rft_dat=%3Cproquest_RIE%3E2303979832%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2303979832&rft_id=info:pmid/&rft_ieee_id=8846603&rfr_iscdi=true