Memristive Quantum Computing Simulator
One of the most promising and powerful candidates for future computing is the notion of universal quantum computer. A vital advance towards this direction is the development of quantum simulators and their possible implementation either as standalone quantum systems or as compatible software for cla...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on nanotechnology 2019, Vol.18, p.1015-1022 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1022 |
---|---|
container_issue | |
container_start_page | 1015 |
container_title | IEEE transactions on nanotechnology |
container_volume | 18 |
creator | Karafyllidis, Ioannis G. Sirakoulis, Georgios Ch Dimitrakis, Panagiotis |
description | One of the most promising and powerful candidates for future computing is the notion of universal quantum computer. A vital advance towards this direction is the development of quantum simulators and their possible implementation either as standalone quantum systems or as compatible software for classical computers with pros and cons. On the other hand, memristive computing has been proposed recently as a tentative unconventional computing scheme promoting the idea of information storage and processing in the same nanoelectronic device. In this paper we present a memristive quantum computing simulator by coupling quantum simulation principles with memristor aspects and enabling us to tackle the existing difficulties on qubit representation in conventional computing systems. For doing so, we utilize the memristances of identical memristors to represent in 3D the qubit state while its corresponding evolution is defined by the memristors input voltages. In particular, we introduce an appropriate correspondence among the aforementioned memristor voltages and the general qubit state rotation, i.e., the one-qubit quantum gates, and as such we reproduce the rotations imposed by the action of quantum gates in the 3D memristance space. Moreover, we also define the action of the CNOT two-qubit gate and simulate entanglement between two qubits paving the way towards the establishment of a universal set for quantum computing. Our results show that, memristor circuits can simulate effectively quantum computations. |
doi_str_mv | 10.1109/TNANO.2019.2941763 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_8846603</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8846603</ieee_id><sourcerecordid>2303979832</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-6301d081fa071779fb392a69687c0766636b42fb6fe6559eee25439031b2176a3</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMoWKt_QC8FwdvWSWYzSY5l8Qtqi1jBW8jWrGzpdmuyK_jvTW3xNO_h_Rgexi45jDkHc7uYTWbzsQBuxsLkXBEesQFPKgPQ8jhpiZRxId9P2VmMK4DkkXrAbp59E-rY1d9-9NK7Tdc3o6Jttn1Xbz5Hr3XTr13XhnN2Url19BeHO2Rv93eL4jGbzh-eisk0Wwoju4wQ-AdoXjlQXClTlWiEI0NaLUEREVKZi6qkypOUxnsvZI4GkJciPeRwyK73vdvQfvU-dnbV9mGTJq1AQKOMRpFcYu9ahjbG4Cu7DXXjwo_lYHc87B8Pu-NhDzxS6GofqtPsf0DrnAgQfwF0rlnk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2303979832</pqid></control><display><type>article</type><title>Memristive Quantum Computing Simulator</title><source>IEEE Electronic Library (IEL)</source><creator>Karafyllidis, Ioannis G. ; Sirakoulis, Georgios Ch ; Dimitrakis, Panagiotis</creator><creatorcontrib>Karafyllidis, Ioannis G. ; Sirakoulis, Georgios Ch ; Dimitrakis, Panagiotis</creatorcontrib><description>One of the most promising and powerful candidates for future computing is the notion of universal quantum computer. A vital advance towards this direction is the development of quantum simulators and their possible implementation either as standalone quantum systems or as compatible software for classical computers with pros and cons. On the other hand, memristive computing has been proposed recently as a tentative unconventional computing scheme promoting the idea of information storage and processing in the same nanoelectronic device. In this paper we present a memristive quantum computing simulator by coupling quantum simulation principles with memristor aspects and enabling us to tackle the existing difficulties on qubit representation in conventional computing systems. For doing so, we utilize the memristances of identical memristors to represent in 3D the qubit state while its corresponding evolution is defined by the memristors input voltages. In particular, we introduce an appropriate correspondence among the aforementioned memristor voltages and the general qubit state rotation, i.e., the one-qubit quantum gates, and as such we reproduce the rotations imposed by the action of quantum gates in the 3D memristance space. Moreover, we also define the action of the CNOT two-qubit gate and simulate entanglement between two qubits paving the way towards the establishment of a universal set for quantum computing. Our results show that, memristor circuits can simulate effectively quantum computations.</description><identifier>ISSN: 1536-125X</identifier><identifier>EISSN: 1941-0085</identifier><identifier>DOI: 10.1109/TNANO.2019.2941763</identifier><identifier>CODEN: ITNECU</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Computer simulation ; Flight simulators ; Information storage ; Logic gates ; Memristors ; Nanoelectronics ; Nanoscale devices ; Nanotechnology devices ; Quantum computers ; Quantum computing ; Quantum entanglement ; Quantum simulators ; Qubit ; Qubits ; Qubits (quantum computing) ; Software ; Three-dimensional displays</subject><ispartof>IEEE transactions on nanotechnology, 2019, Vol.18, p.1015-1022</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-6301d081fa071779fb392a69687c0766636b42fb6fe6559eee25439031b2176a3</citedby><cites>FETCH-LOGICAL-c295t-6301d081fa071779fb392a69687c0766636b42fb6fe6559eee25439031b2176a3</cites><orcidid>0000-0001-8240-484X ; 0000-0002-4941-0487 ; 0000-0003-2079-5480</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8846603$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,4024,27923,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8846603$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Karafyllidis, Ioannis G.</creatorcontrib><creatorcontrib>Sirakoulis, Georgios Ch</creatorcontrib><creatorcontrib>Dimitrakis, Panagiotis</creatorcontrib><title>Memristive Quantum Computing Simulator</title><title>IEEE transactions on nanotechnology</title><addtitle>TNANO</addtitle><description>One of the most promising and powerful candidates for future computing is the notion of universal quantum computer. A vital advance towards this direction is the development of quantum simulators and their possible implementation either as standalone quantum systems or as compatible software for classical computers with pros and cons. On the other hand, memristive computing has been proposed recently as a tentative unconventional computing scheme promoting the idea of information storage and processing in the same nanoelectronic device. In this paper we present a memristive quantum computing simulator by coupling quantum simulation principles with memristor aspects and enabling us to tackle the existing difficulties on qubit representation in conventional computing systems. For doing so, we utilize the memristances of identical memristors to represent in 3D the qubit state while its corresponding evolution is defined by the memristors input voltages. In particular, we introduce an appropriate correspondence among the aforementioned memristor voltages and the general qubit state rotation, i.e., the one-qubit quantum gates, and as such we reproduce the rotations imposed by the action of quantum gates in the 3D memristance space. Moreover, we also define the action of the CNOT two-qubit gate and simulate entanglement between two qubits paving the way towards the establishment of a universal set for quantum computing. Our results show that, memristor circuits can simulate effectively quantum computations.</description><subject>Computer simulation</subject><subject>Flight simulators</subject><subject>Information storage</subject><subject>Logic gates</subject><subject>Memristors</subject><subject>Nanoelectronics</subject><subject>Nanoscale devices</subject><subject>Nanotechnology devices</subject><subject>Quantum computers</subject><subject>Quantum computing</subject><subject>Quantum entanglement</subject><subject>Quantum simulators</subject><subject>Qubit</subject><subject>Qubits</subject><subject>Qubits (quantum computing)</subject><subject>Software</subject><subject>Three-dimensional displays</subject><issn>1536-125X</issn><issn>1941-0085</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1LAzEQhoMoWKt_QC8FwdvWSWYzSY5l8Qtqi1jBW8jWrGzpdmuyK_jvTW3xNO_h_Rgexi45jDkHc7uYTWbzsQBuxsLkXBEesQFPKgPQ8jhpiZRxId9P2VmMK4DkkXrAbp59E-rY1d9-9NK7Tdc3o6Jttn1Xbz5Hr3XTr13XhnN2Url19BeHO2Rv93eL4jGbzh-eisk0Wwoju4wQ-AdoXjlQXClTlWiEI0NaLUEREVKZi6qkypOUxnsvZI4GkJciPeRwyK73vdvQfvU-dnbV9mGTJq1AQKOMRpFcYu9ahjbG4Cu7DXXjwo_lYHc87B8Pu-NhDzxS6GofqtPsf0DrnAgQfwF0rlnk</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Karafyllidis, Ioannis G.</creator><creator>Sirakoulis, Georgios Ch</creator><creator>Dimitrakis, Panagiotis</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-8240-484X</orcidid><orcidid>https://orcid.org/0000-0002-4941-0487</orcidid><orcidid>https://orcid.org/0000-0003-2079-5480</orcidid></search><sort><creationdate>2019</creationdate><title>Memristive Quantum Computing Simulator</title><author>Karafyllidis, Ioannis G. ; Sirakoulis, Georgios Ch ; Dimitrakis, Panagiotis</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-6301d081fa071779fb392a69687c0766636b42fb6fe6559eee25439031b2176a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Computer simulation</topic><topic>Flight simulators</topic><topic>Information storage</topic><topic>Logic gates</topic><topic>Memristors</topic><topic>Nanoelectronics</topic><topic>Nanoscale devices</topic><topic>Nanotechnology devices</topic><topic>Quantum computers</topic><topic>Quantum computing</topic><topic>Quantum entanglement</topic><topic>Quantum simulators</topic><topic>Qubit</topic><topic>Qubits</topic><topic>Qubits (quantum computing)</topic><topic>Software</topic><topic>Three-dimensional displays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Karafyllidis, Ioannis G.</creatorcontrib><creatorcontrib>Sirakoulis, Georgios Ch</creatorcontrib><creatorcontrib>Dimitrakis, Panagiotis</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on nanotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Karafyllidis, Ioannis G.</au><au>Sirakoulis, Georgios Ch</au><au>Dimitrakis, Panagiotis</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Memristive Quantum Computing Simulator</atitle><jtitle>IEEE transactions on nanotechnology</jtitle><stitle>TNANO</stitle><date>2019</date><risdate>2019</risdate><volume>18</volume><spage>1015</spage><epage>1022</epage><pages>1015-1022</pages><issn>1536-125X</issn><eissn>1941-0085</eissn><coden>ITNECU</coden><abstract>One of the most promising and powerful candidates for future computing is the notion of universal quantum computer. A vital advance towards this direction is the development of quantum simulators and their possible implementation either as standalone quantum systems or as compatible software for classical computers with pros and cons. On the other hand, memristive computing has been proposed recently as a tentative unconventional computing scheme promoting the idea of information storage and processing in the same nanoelectronic device. In this paper we present a memristive quantum computing simulator by coupling quantum simulation principles with memristor aspects and enabling us to tackle the existing difficulties on qubit representation in conventional computing systems. For doing so, we utilize the memristances of identical memristors to represent in 3D the qubit state while its corresponding evolution is defined by the memristors input voltages. In particular, we introduce an appropriate correspondence among the aforementioned memristor voltages and the general qubit state rotation, i.e., the one-qubit quantum gates, and as such we reproduce the rotations imposed by the action of quantum gates in the 3D memristance space. Moreover, we also define the action of the CNOT two-qubit gate and simulate entanglement between two qubits paving the way towards the establishment of a universal set for quantum computing. Our results show that, memristor circuits can simulate effectively quantum computations.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TNANO.2019.2941763</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-8240-484X</orcidid><orcidid>https://orcid.org/0000-0002-4941-0487</orcidid><orcidid>https://orcid.org/0000-0003-2079-5480</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1536-125X |
ispartof | IEEE transactions on nanotechnology, 2019, Vol.18, p.1015-1022 |
issn | 1536-125X 1941-0085 |
language | eng |
recordid | cdi_ieee_primary_8846603 |
source | IEEE Electronic Library (IEL) |
subjects | Computer simulation Flight simulators Information storage Logic gates Memristors Nanoelectronics Nanoscale devices Nanotechnology devices Quantum computers Quantum computing Quantum entanglement Quantum simulators Qubit Qubits Qubits (quantum computing) Software Three-dimensional displays |
title | Memristive Quantum Computing Simulator |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T04%3A19%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Memristive%20Quantum%20Computing%20Simulator&rft.jtitle=IEEE%20transactions%20on%20nanotechnology&rft.au=Karafyllidis,%20Ioannis%20G.&rft.date=2019&rft.volume=18&rft.spage=1015&rft.epage=1022&rft.pages=1015-1022&rft.issn=1536-125X&rft.eissn=1941-0085&rft.coden=ITNECU&rft_id=info:doi/10.1109/TNANO.2019.2941763&rft_dat=%3Cproquest_RIE%3E2303979832%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2303979832&rft_id=info:pmid/&rft_ieee_id=8846603&rfr_iscdi=true |