Memristive Quantum Computing Simulator
One of the most promising and powerful candidates for future computing is the notion of universal quantum computer. A vital advance towards this direction is the development of quantum simulators and their possible implementation either as standalone quantum systems or as compatible software for cla...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on nanotechnology 2019, Vol.18, p.1015-1022 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | One of the most promising and powerful candidates for future computing is the notion of universal quantum computer. A vital advance towards this direction is the development of quantum simulators and their possible implementation either as standalone quantum systems or as compatible software for classical computers with pros and cons. On the other hand, memristive computing has been proposed recently as a tentative unconventional computing scheme promoting the idea of information storage and processing in the same nanoelectronic device. In this paper we present a memristive quantum computing simulator by coupling quantum simulation principles with memristor aspects and enabling us to tackle the existing difficulties on qubit representation in conventional computing systems. For doing so, we utilize the memristances of identical memristors to represent in 3D the qubit state while its corresponding evolution is defined by the memristors input voltages. In particular, we introduce an appropriate correspondence among the aforementioned memristor voltages and the general qubit state rotation, i.e., the one-qubit quantum gates, and as such we reproduce the rotations imposed by the action of quantum gates in the 3D memristance space. Moreover, we also define the action of the CNOT two-qubit gate and simulate entanglement between two qubits paving the way towards the establishment of a universal set for quantum computing. Our results show that, memristor circuits can simulate effectively quantum computations. |
---|---|
ISSN: | 1536-125X 1941-0085 |
DOI: | 10.1109/TNANO.2019.2941763 |