High-Current Switched Capacitor Converter for On-Package VR With PDN Impedance Modeling

Digital ASIC devices are widely used in networking and computing applications. This kind of devices is implemented with a short-channel technology requiring high peak currents for high complexity systems and a low supply voltage. Digital ASICs are powered by an external voltage regulator with specif...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal of emerging and selected topics in power electronics 2020-06, Vol.8 (2), p.1633-1643
Hauptverfasser: Ursino, Mario, Saggini, Stefano, Jiang, Shuai, Nan, Chenhao, Rinaldo, Roberto, Rizzolatti, Roberto
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Digital ASIC devices are widely used in networking and computing applications. This kind of devices is implemented with a short-channel technology requiring high peak currents for high complexity systems and a low supply voltage. Digital ASICs are powered by an external voltage regulator with specifications similar to modern microprocessors' power supply [voltage regulation modules (VRMs)]. In order to reduce the number of power pins and to reduce the power distribution network (PDN) issue, Intel's Fourth-Generation Core integrates the voltage regulators. Moreover, many on-package conversion systems are present in the literature. In this article, a conversion solution based on a switched resonant tank is presented, yielding currents up to 300 A at 0.8 V, in an area of 10 cm 2 , with a resonant-driving technique. The novel converter is used to validate a new linear time-periodic (LTP) system modeling approach that can be applied to generic switched topologies; this contribution yields a mathematical description of the conversion chain, in particular enabling the precise calculation of the output impedance when a switched topology is used as the last stage.
ISSN:2168-6777
2168-6785
DOI:10.1109/JESTPE.2019.2942969