Deep Reinforcement Learning for Strategic Bidding in Electricity Markets
Bi-level optimization and reinforcement learning (RL) constitute the state-of-the-art frameworks for modeling strategic bidding decisions in deregulated electricity markets. However, the former neglects the market participants' physical non-convex operating characteristics, while conventional R...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on smart grid 2020-03, Vol.11 (2), p.1343-1355 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Bi-level optimization and reinforcement learning (RL) constitute the state-of-the-art frameworks for modeling strategic bidding decisions in deregulated electricity markets. However, the former neglects the market participants' physical non-convex operating characteristics, while conventional RL methods require discretization of state and/or action spaces and thus suffer from the curse of dimensionality. This paper proposes a novel deep reinforcement learning (DRL) based methodology, combining a deep deterministic policy gradient (DDPG) method with a prioritized experience replay (PER) strategy. This approach sets up the problem in multi-dimensional continuous state and action spaces, enabling market participants to receive accurate feedback regarding the impact of their bidding decisions on the market clearing outcome, and devise more profitable bidding decisions by exploiting the entire action domain, also accounting for the effect of non-convex operating characteristics. Case studies demonstrate that the proposed methodology achieves a significantly higher profit than the alternative state-of-the-art methods, and exhibits a more favourable computational performance than benchmark RL methods due to the employment of the PER strategy. |
---|---|
ISSN: | 1949-3053 1949-3061 |
DOI: | 10.1109/TSG.2019.2936142 |