Off-Grid DOA Estimation for Colocated MIMO Radar via Reduced-Complexity Sparse Bayesian Learning

Recent advance on signal processing has witnessed increasing interest in machine learning. In this paper, we revisit the problem of direction-of-arrival (DOA) estimation for colocated multiple-input multiple-output (MIMO) radar from the perspective of machine learning. The reduced-complexity transfo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2019, Vol.7, p.99907-99916
Hauptverfasser: Liu, Tingting, Wen, Fangqing, Zhang, Lei, Wang, Ke
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Recent advance on signal processing has witnessed increasing interest in machine learning. In this paper, we revisit the problem of direction-of-arrival (DOA) estimation for colocated multiple-input multiple-output (MIMO) radar from the perspective of machine learning. The reduced-complexity transformation is first applied on the array data from matched filters, thus eliminating the redundancy of the array data for the relief of calculational burden. Furthermore, the pre-whitening is followed to obtain a simplified noise model. Finally, the DOA estimation is linked to off-grid sparse Bayesian learning (OGSBL), which does not require to update the noise hyper-parameter, and a block hyper-parameter is utilized to accelerate the convergence of the OGSBL algorithm. The proposed estimator provides better DOA estimation accuracy than the existing peak searching algorithm. The effectiveness of the proposed algorithm is verified via numerical simulation.
ISSN:2169-3536
2169-3536
DOI:10.1109/ACCESS.2019.2930531