The Informativeness of k -Means for Learning Mixture Models

The learning of mixture models can be viewed as a clustering problem. Indeed, given data samples independently generated from a mixture of distributions, we often would like to find the correct target clustering of the samples according to which component distribution they were generated from. For a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on information theory 2019-11, Vol.65 (11), p.7460-7479
Hauptverfasser: Liu, Zhaoqiang, Tan, Vincent Y. F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The learning of mixture models can be viewed as a clustering problem. Indeed, given data samples independently generated from a mixture of distributions, we often would like to find the correct target clustering of the samples according to which component distribution they were generated from. For a clustering problem, practitioners often choose to use the simple k-means algorithm. k-means attempts to find an optimal clustering which minimizes the sum-of-squares distance between each point and its cluster center. In this paper, we consider fundamental (i.e., information-theoretic) limits of the solutions (clusterings) obtained by optimizing the sum-of-squares distance. In particular, we provide sufficient conditions for the closeness of any optimal clustering and the correct target clustering assuming that the data samples are generated from a mixture of spherical Gaussian distributions. We also generalize our results to log-concave distributions. Moreover, we show that under similar or even weaker conditions on the mixture model, any optimal clustering for the samples with reduced dimensionality is also close to the correct target clustering. These results provide intuition for the informativeness of k-means (with and without dimensionality reduction) as an algorithm for learning mixture models.
ISSN:0018-9448
1557-9654
DOI:10.1109/TIT.2019.2927560