Adaptive Neuro-Filtering Based Visual Servo Control of a Robotic Manipulator

This paper focuses on the solutions to flexibly regulate robotic by vision. A new visual servoing technique based on the Kalman filtering (KF) combined neural network (NN) is developed, which need not have any calibration parameters of robotic system. The statistic knowledge of the system noise and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2019, Vol.7, p.76891-76901
Hauptverfasser: Zhong, Xungao, Zhong, Xunyu, Hu, Huosheng, Peng, Xiafu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper focuses on the solutions to flexibly regulate robotic by vision. A new visual servoing technique based on the Kalman filtering (KF) combined neural network (NN) is developed, which need not have any calibration parameters of robotic system. The statistic knowledge of the system noise and observation noise are first given by Gaussian white noise sequences, the nonlinear mapping between robotic vision and motor spaces are then on-line identified using standard Kalman recursive equations. In real robotic workshops, the perfect statistic knowledge of the noise is not easy to be derived, thus an adaptive neuro-filtering approach based on KF is also studied for mapping on-line estimation in this paper. The Kalman recursive equations are improved by a feedforward NN, in which the neural estimator dynamic adjusts its weights to minimize estimation error of robotic vision-motor mapping, without the knowledge of noise variances. Finally, the proposed visual servoing based on adaptive neuro-filtering has been successfully implemented in robotic pose regulation, and the experimental results demonstrate its validity and practicality for a six-degree-of-freedom (DOF) robotic system which the hand-eye without calibrated.
ISSN:2169-3536
2169-3536
DOI:10.1109/ACCESS.2019.2920941