Scene Context-Driven Vehicle Detection in High-Resolution Aerial Images

As the spatial resolution of remote sensing images is improving gradually, it is feasible to realize "scene-object" collaborative image interpretation. Unfortunately, this idea is not fully utilized in vehicle detection from high-resolution aerial images, and most of the existing methods m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on geoscience and remote sensing 2019-10, Vol.57 (10), p.7339-7351
Hauptverfasser: Tao, Chao, Mi, Li, Li, Yansheng, Qi, Ji, Xiao, Yuan, Zhang, Jiaxing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:As the spatial resolution of remote sensing images is improving gradually, it is feasible to realize "scene-object" collaborative image interpretation. Unfortunately, this idea is not fully utilized in vehicle detection from high-resolution aerial images, and most of the existing methods may be promoted by considering the variability of vehicle spatial distribution in different image scenes and treating vehicle detection tasks scene-specific. With this motivation, a scene context-driven vehicle detection method is proposed in this paper. At first, we perform scene classification using the deep learning method and, then, detect vehicles in roads and parking lots separately through different vehicle detectors. Afterward, we further optimize the detection results using different postprocessing rules according to different scene types. Experimental results show that the proposed approach outperforms the state-of-the-art algorithms in terms of higher detection accuracy rate and lower false alarm rate.
ISSN:0196-2892
1558-0644
DOI:10.1109/TGRS.2019.2912985