Bayesian State Estimation for Unobservable Distribution Systems via Deep Learning

The problem of state estimation for unobservable distribution systems is considered. A deep learning approach to Bayesian state estimation is proposed for real-time applications. The proposed technique consists of distribution learning of stochastic power injection, a Monte Carlo technique for the t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on power systems 2019-11, Vol.34 (6), p.4910-4920
Hauptverfasser: Mestav, Kursat Rasim, Luengo-Rozas, Jaime, Tong, Lang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The problem of state estimation for unobservable distribution systems is considered. A deep learning approach to Bayesian state estimation is proposed for real-time applications. The proposed technique consists of distribution learning of stochastic power injection, a Monte Carlo technique for the training of a deep neural network for state estimation, and a Bayesian bad-data detection and filtering algorithm. Structural characteristics of the deep neural networks are investigated. Simulations illustrate the accuracy of Bayesian state estimation for unobservable systems and demonstrate the benefit of employing a deep neural network. Numerical results show the robustness of Bayesian state estimation against modeling and estimation errors and the presence of bad and missing data. Comparing with pseudo-measurement techniques, direct Bayesian state estimation via deep learning neural network outperforms existing benchmarks.
ISSN:0885-8950
1558-0679
DOI:10.1109/TPWRS.2019.2919157