Facial Image Inpainting With Deep Generative Model and Patch Search Using Region Weight

Facial image inpainting is a challenging task because the missing region needs to be filled by the new pixels with semantic information (e.g., noses and mouths). The traditional methods that involve searching for similar patches are mature but it is not suitable for semantic inpainting. Recently, th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2019, Vol.7, p.67456-67468
Hauptverfasser: Wei, Jinsheng, Lu, Guanming, Liu, Huaming, Yan, Jingjie
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 67468
container_issue
container_start_page 67456
container_title IEEE access
container_volume 7
creator Wei, Jinsheng
Lu, Guanming
Liu, Huaming
Yan, Jingjie
description Facial image inpainting is a challenging task because the missing region needs to be filled by the new pixels with semantic information (e.g., noses and mouths). The traditional methods that involve searching for similar patches are mature but it is not suitable for semantic inpainting. Recently, the deep generative model-based methods have been able to implement semantic image inpainting although inpainting results are blurry or distorted. In this paper, through analyzing the advantages and disadvantages of the two methods, we propose a novel and efficient method that combines these two methods by a series connection, which searches for the most reasonable similar patch using the coarse image generated by the deep generative model. When training model, adding Laplace loss to standard loss accelerates model convergence. In addition, we define region weight (RW) when searching for similar patches, which makes edge connection more natural. Our method addresses the problem of blurred results in the deep generative model and dissatisfactory semantic information in the traditional methods. Our experiments, which used the CelebA dataset, demonstrate that our method can achieve realistic and natural facial inpainting results.
doi_str_mv 10.1109/ACCESS.2019.2919169
format Article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_8723111</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8723111</ieee_id><doaj_id>oai_doaj_org_article_11095aad0b6548dcb2335eea001884f9</doaj_id><sourcerecordid>2455636569</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3239-1099e77b1a6d12089123f6568581f14bd8d8716f2d99f9fe5dc9bc7b54aa64de3</originalsourceid><addsrcrecordid>eNpNUU1LxDAQLaKgqL_AS8DzrpmkSZOjrF8LiuIqewzTZtrNsrZrWgX_vVkr4lzeMMx785iXZWfApwDcXlzOZteLxVRwsFNhwYK2e9mRSDCRSur9f_1hdtr3a57KpJEqjrLlDVYBN2z-hg2xebvF0A6hbdgyDCt2RbRlt9RSxCF8EnvoPG0Ytp494VCt2IIwJnjtd4xnakLXsiWFZjWcZAc1bno6_cXj7PXm-mV2N7l_vJ3PLu8nlRTSTpJ_S0VRAmoPghsLQtZaaaMM1JCX3nhTgK6Ft7a2NSlf2bIqSpUj6tyTPM7mo67vcO22Mbxh_HIdBvcz6GLjMA6h2pDbPUshel5qlRtflUJKRYScgzF5bZPW-ai1jd37B_WDW3cfsU32nciV0jIZ223JcauKXd9Hqv-uAv-54cZA3C4Q9xtIYp2NrEBEfwxTCAkA8htZ5oSk</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2455636569</pqid></control><display><type>article</type><title>Facial Image Inpainting With Deep Generative Model and Patch Search Using Region Weight</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Wei, Jinsheng ; Lu, Guanming ; Liu, Huaming ; Yan, Jingjie</creator><creatorcontrib>Wei, Jinsheng ; Lu, Guanming ; Liu, Huaming ; Yan, Jingjie</creatorcontrib><description>Facial image inpainting is a challenging task because the missing region needs to be filled by the new pixels with semantic information (e.g., noses and mouths). The traditional methods that involve searching for similar patches are mature but it is not suitable for semantic inpainting. Recently, the deep generative model-based methods have been able to implement semantic image inpainting although inpainting results are blurry or distorted. In this paper, through analyzing the advantages and disadvantages of the two methods, we propose a novel and efficient method that combines these two methods by a series connection, which searches for the most reasonable similar patch using the coarse image generated by the deep generative model. When training model, adding Laplace loss to standard loss accelerates model convergence. In addition, we define region weight (RW) when searching for similar patches, which makes edge connection more natural. Our method addresses the problem of blurred results in the deep generative model and dissatisfactory semantic information in the traditional methods. Our experiments, which used the CelebA dataset, demonstrate that our method can achieve realistic and natural facial inpainting results.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2019.2919169</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>deep generative model ; Deep learning ; Facial image inpainting ; Generators ; Image edge detection ; region weight ; Searching ; Semantics ; similar patch ; Task analysis ; Telecommunications ; Training ; Weight</subject><ispartof>IEEE access, 2019, Vol.7, p.67456-67468</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3239-1099e77b1a6d12089123f6568581f14bd8d8716f2d99f9fe5dc9bc7b54aa64de3</citedby><cites>FETCH-LOGICAL-c3239-1099e77b1a6d12089123f6568581f14bd8d8716f2d99f9fe5dc9bc7b54aa64de3</cites><orcidid>0000-0002-0268-7745 ; 0000-0002-6112-6307</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8723111$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,4010,27610,27900,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Wei, Jinsheng</creatorcontrib><creatorcontrib>Lu, Guanming</creatorcontrib><creatorcontrib>Liu, Huaming</creatorcontrib><creatorcontrib>Yan, Jingjie</creatorcontrib><title>Facial Image Inpainting With Deep Generative Model and Patch Search Using Region Weight</title><title>IEEE access</title><addtitle>Access</addtitle><description>Facial image inpainting is a challenging task because the missing region needs to be filled by the new pixels with semantic information (e.g., noses and mouths). The traditional methods that involve searching for similar patches are mature but it is not suitable for semantic inpainting. Recently, the deep generative model-based methods have been able to implement semantic image inpainting although inpainting results are blurry or distorted. In this paper, through analyzing the advantages and disadvantages of the two methods, we propose a novel and efficient method that combines these two methods by a series connection, which searches for the most reasonable similar patch using the coarse image generated by the deep generative model. When training model, adding Laplace loss to standard loss accelerates model convergence. In addition, we define region weight (RW) when searching for similar patches, which makes edge connection more natural. Our method addresses the problem of blurred results in the deep generative model and dissatisfactory semantic information in the traditional methods. Our experiments, which used the CelebA dataset, demonstrate that our method can achieve realistic and natural facial inpainting results.</description><subject>deep generative model</subject><subject>Deep learning</subject><subject>Facial image inpainting</subject><subject>Generators</subject><subject>Image edge detection</subject><subject>region weight</subject><subject>Searching</subject><subject>Semantics</subject><subject>similar patch</subject><subject>Task analysis</subject><subject>Telecommunications</subject><subject>Training</subject><subject>Weight</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1LxDAQLaKgqL_AS8DzrpmkSZOjrF8LiuIqewzTZtrNsrZrWgX_vVkr4lzeMMx785iXZWfApwDcXlzOZteLxVRwsFNhwYK2e9mRSDCRSur9f_1hdtr3a57KpJEqjrLlDVYBN2z-hg2xebvF0A6hbdgyDCt2RbRlt9RSxCF8EnvoPG0Ytp494VCt2IIwJnjtd4xnakLXsiWFZjWcZAc1bno6_cXj7PXm-mV2N7l_vJ3PLu8nlRTSTpJ_S0VRAmoPghsLQtZaaaMM1JCX3nhTgK6Ft7a2NSlf2bIqSpUj6tyTPM7mo67vcO22Mbxh_HIdBvcz6GLjMA6h2pDbPUshel5qlRtflUJKRYScgzF5bZPW-ai1jd37B_WDW3cfsU32nciV0jIZ223JcauKXd9Hqv-uAv-54cZA3C4Q9xtIYp2NrEBEfwxTCAkA8htZ5oSk</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Wei, Jinsheng</creator><creator>Lu, Guanming</creator><creator>Liu, Huaming</creator><creator>Yan, Jingjie</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-0268-7745</orcidid><orcidid>https://orcid.org/0000-0002-6112-6307</orcidid></search><sort><creationdate>2019</creationdate><title>Facial Image Inpainting With Deep Generative Model and Patch Search Using Region Weight</title><author>Wei, Jinsheng ; Lu, Guanming ; Liu, Huaming ; Yan, Jingjie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3239-1099e77b1a6d12089123f6568581f14bd8d8716f2d99f9fe5dc9bc7b54aa64de3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>deep generative model</topic><topic>Deep learning</topic><topic>Facial image inpainting</topic><topic>Generators</topic><topic>Image edge detection</topic><topic>region weight</topic><topic>Searching</topic><topic>Semantics</topic><topic>similar patch</topic><topic>Task analysis</topic><topic>Telecommunications</topic><topic>Training</topic><topic>Weight</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wei, Jinsheng</creatorcontrib><creatorcontrib>Lu, Guanming</creatorcontrib><creatorcontrib>Liu, Huaming</creatorcontrib><creatorcontrib>Yan, Jingjie</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wei, Jinsheng</au><au>Lu, Guanming</au><au>Liu, Huaming</au><au>Yan, Jingjie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Facial Image Inpainting With Deep Generative Model and Patch Search Using Region Weight</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2019</date><risdate>2019</risdate><volume>7</volume><spage>67456</spage><epage>67468</epage><pages>67456-67468</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Facial image inpainting is a challenging task because the missing region needs to be filled by the new pixels with semantic information (e.g., noses and mouths). The traditional methods that involve searching for similar patches are mature but it is not suitable for semantic inpainting. Recently, the deep generative model-based methods have been able to implement semantic image inpainting although inpainting results are blurry or distorted. In this paper, through analyzing the advantages and disadvantages of the two methods, we propose a novel and efficient method that combines these two methods by a series connection, which searches for the most reasonable similar patch using the coarse image generated by the deep generative model. When training model, adding Laplace loss to standard loss accelerates model convergence. In addition, we define region weight (RW) when searching for similar patches, which makes edge connection more natural. Our method addresses the problem of blurred results in the deep generative model and dissatisfactory semantic information in the traditional methods. Our experiments, which used the CelebA dataset, demonstrate that our method can achieve realistic and natural facial inpainting results.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2019.2919169</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-0268-7745</orcidid><orcidid>https://orcid.org/0000-0002-6112-6307</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2019, Vol.7, p.67456-67468
issn 2169-3536
2169-3536
language eng
recordid cdi_ieee_primary_8723111
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects deep generative model
Deep learning
Facial image inpainting
Generators
Image edge detection
region weight
Searching
Semantics
similar patch
Task analysis
Telecommunications
Training
Weight
title Facial Image Inpainting With Deep Generative Model and Patch Search Using Region Weight
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T00%3A49%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Facial%20Image%20Inpainting%20With%20Deep%20Generative%20Model%20and%20Patch%20Search%20Using%20Region%20Weight&rft.jtitle=IEEE%20access&rft.au=Wei,%20Jinsheng&rft.date=2019&rft.volume=7&rft.spage=67456&rft.epage=67468&rft.pages=67456-67468&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2019.2919169&rft_dat=%3Cproquest_ieee_%3E2455636569%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2455636569&rft_id=info:pmid/&rft_ieee_id=8723111&rft_doaj_id=oai_doaj_org_article_11095aad0b6548dcb2335eea001884f9&rfr_iscdi=true