Facial Image Inpainting With Deep Generative Model and Patch Search Using Region Weight

Facial image inpainting is a challenging task because the missing region needs to be filled by the new pixels with semantic information (e.g., noses and mouths). The traditional methods that involve searching for similar patches are mature but it is not suitable for semantic inpainting. Recently, th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2019, Vol.7, p.67456-67468
Hauptverfasser: Wei, Jinsheng, Lu, Guanming, Liu, Huaming, Yan, Jingjie
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Facial image inpainting is a challenging task because the missing region needs to be filled by the new pixels with semantic information (e.g., noses and mouths). The traditional methods that involve searching for similar patches are mature but it is not suitable for semantic inpainting. Recently, the deep generative model-based methods have been able to implement semantic image inpainting although inpainting results are blurry or distorted. In this paper, through analyzing the advantages and disadvantages of the two methods, we propose a novel and efficient method that combines these two methods by a series connection, which searches for the most reasonable similar patch using the coarse image generated by the deep generative model. When training model, adding Laplace loss to standard loss accelerates model convergence. In addition, we define region weight (RW) when searching for similar patches, which makes edge connection more natural. Our method addresses the problem of blurred results in the deep generative model and dissatisfactory semantic information in the traditional methods. Our experiments, which used the CelebA dataset, demonstrate that our method can achieve realistic and natural facial inpainting results.
ISSN:2169-3536
2169-3536
DOI:10.1109/ACCESS.2019.2919169