Multi-Armed Bandit Beam Alignment and Tracking for Mobile Millimeter Wave Communications

We propose a novel beam alignment and tracking algorithm for time-varying millimeter wave channels with a dynamic channel support. Millimeter wave beam alignment is challenging due to the expected large number of antennas. A multi-armed bandit training beam selection policy is used to balance explor...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE communications letters 2019-07, Vol.23 (7), p.1244-1248
Hauptverfasser: Booth, Matthew B., Suresh, Vinayak, Michelusi, Nicolo, Love, David J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We propose a novel beam alignment and tracking algorithm for time-varying millimeter wave channels with a dynamic channel support. Millimeter wave beam alignment is challenging due to the expected large number of antennas. A multi-armed bandit training beam selection policy is used to balance exploration of the set of feasible beams. We track the channel using a synthesis of sparse Bayesian learning and Kalman filtering and smoothing. Results show our algorithm has a more rapid rate of initial beam alignment compared to other beam selection policies and, for dynamic channel support, long-term beamforming gain commensurate to omni-directional training.
ISSN:1089-7798
1558-2558
DOI:10.1109/LCOMM.2019.2919016