Inner Approximations of the Maximal Positively Invariant Set for Polynomial Dynamical Systems

The Lasserre or moment-sum-of-square hierarchy of linear matrix inequality relaxations is used to compute inner approximations of the maximal positively invariant set for continuous-time dynamical systems with polynomial vector fields. Convergence in volume of the hierarchy is proved under a technic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE control systems letters 2019-07, Vol.3 (3), p.733-738
Hauptverfasser: Oustry, Antoine, Tacchi, Matteo, Henrion, Didier
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 738
container_issue 3
container_start_page 733
container_title IEEE control systems letters
container_volume 3
creator Oustry, Antoine
Tacchi, Matteo
Henrion, Didier
description The Lasserre or moment-sum-of-square hierarchy of linear matrix inequality relaxations is used to compute inner approximations of the maximal positively invariant set for continuous-time dynamical systems with polynomial vector fields. Convergence in volume of the hierarchy is proved under a technical growth condition on the average exit time of trajectories. Our contribution is to deal with inner approximations in infinite time, while former work with volume convergence guarantees proposed either outer approximations of the maximal positively invariant set or inner approximations of the region of attraction in finite time.
doi_str_mv 10.1109/LCSYS.2019.2916256
format Article
fullrecord <record><control><sourceid>hal_RIE</sourceid><recordid>TN_cdi_ieee_primary_8712554</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8712554</ieee_id><sourcerecordid>oai_HAL_hal_02064440v3</sourcerecordid><originalsourceid>FETCH-LOGICAL-c345t-36d234733fdc9350ce56007bbe91ef49bfea1b2769c0ddcb65bb0a17423f433f3</originalsourceid><addsrcrecordid>eNpNkEtLw0AUhQdRsGj_gG5m66L1zjOdZamPFiIK0YULGSbJhI4kmTITivn3JrYUV_dw7vkul4PQDYE5IaDu01X2mc0pEDWnikgq5BmaUJ6IGeFCnv_Tl2ga4zcAkAVNgKoJ-tq0rQ14udsF_-Ma0znfRuwr3G0tfjGjVeM3H13n9rbu8abdm-BM2-HMdrjyYVjWfesbN-Qe-tY0rhhU1sfONvEaXVSmjnZ6nFfo4-nxfbWepa_Pm9UynRWMi27GZEkZTxirykIxAYUVEiDJc6uIrbjKK2tIThOpCijLIpciz8GQhFNW8YFiV-jucHdrar0Lw9Oh1944vV6mevSAguScw54NWXrIFsHHGGx1AgjosU_916ce-9THPgfo9gA5a-0JWCSECsHZL_NOclM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Inner Approximations of the Maximal Positively Invariant Set for Polynomial Dynamical Systems</title><source>IEEE Electronic Library (IEL)</source><creator>Oustry, Antoine ; Tacchi, Matteo ; Henrion, Didier</creator><creatorcontrib>Oustry, Antoine ; Tacchi, Matteo ; Henrion, Didier</creatorcontrib><description>The Lasserre or moment-sum-of-square hierarchy of linear matrix inequality relaxations is used to compute inner approximations of the maximal positively invariant set for continuous-time dynamical systems with polynomial vector fields. Convergence in volume of the hierarchy is proved under a technical growth condition on the average exit time of trajectories. Our contribution is to deal with inner approximations in infinite time, while former work with volume convergence guarantees proposed either outer approximations of the maximal positively invariant set or inner approximations of the region of attraction in finite time.</description><identifier>ISSN: 2475-1456</identifier><identifier>EISSN: 2475-1456</identifier><identifier>DOI: 10.1109/LCSYS.2019.2916256</identifier><identifier>CODEN: ICSLBO</identifier><language>eng</language><publisher>IEEE</publisher><subject>algebraic/geometric methods ; Companies ; computational methods ; Computer Science ; Convergence ; Current measurement ; Linear matrix inequalities ; LMIs ; Mathematics ; Optimization and Control ; Stability of nonlinear systems ; Systems and Control ; Time measurement ; Trajectory</subject><ispartof>IEEE control systems letters, 2019-07, Vol.3 (3), p.733-738</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c345t-36d234733fdc9350ce56007bbe91ef49bfea1b2769c0ddcb65bb0a17423f433f3</citedby><cites>FETCH-LOGICAL-c345t-36d234733fdc9350ce56007bbe91ef49bfea1b2769c0ddcb65bb0a17423f433f3</cites><orcidid>0000-0001-7953-263X ; 0000-0001-6735-7715 ; 0000-0002-5517-5989</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8712554$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,777,781,793,882,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8712554$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://hal.science/hal-02064440$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Oustry, Antoine</creatorcontrib><creatorcontrib>Tacchi, Matteo</creatorcontrib><creatorcontrib>Henrion, Didier</creatorcontrib><title>Inner Approximations of the Maximal Positively Invariant Set for Polynomial Dynamical Systems</title><title>IEEE control systems letters</title><addtitle>LCSYS</addtitle><description>The Lasserre or moment-sum-of-square hierarchy of linear matrix inequality relaxations is used to compute inner approximations of the maximal positively invariant set for continuous-time dynamical systems with polynomial vector fields. Convergence in volume of the hierarchy is proved under a technical growth condition on the average exit time of trajectories. Our contribution is to deal with inner approximations in infinite time, while former work with volume convergence guarantees proposed either outer approximations of the maximal positively invariant set or inner approximations of the region of attraction in finite time.</description><subject>algebraic/geometric methods</subject><subject>Companies</subject><subject>computational methods</subject><subject>Computer Science</subject><subject>Convergence</subject><subject>Current measurement</subject><subject>Linear matrix inequalities</subject><subject>LMIs</subject><subject>Mathematics</subject><subject>Optimization and Control</subject><subject>Stability of nonlinear systems</subject><subject>Systems and Control</subject><subject>Time measurement</subject><subject>Trajectory</subject><issn>2475-1456</issn><issn>2475-1456</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkEtLw0AUhQdRsGj_gG5m66L1zjOdZamPFiIK0YULGSbJhI4kmTITivn3JrYUV_dw7vkul4PQDYE5IaDu01X2mc0pEDWnikgq5BmaUJ6IGeFCnv_Tl2ga4zcAkAVNgKoJ-tq0rQ14udsF_-Ma0znfRuwr3G0tfjGjVeM3H13n9rbu8abdm-BM2-HMdrjyYVjWfesbN-Qe-tY0rhhU1sfONvEaXVSmjnZ6nFfo4-nxfbWepa_Pm9UynRWMi27GZEkZTxirykIxAYUVEiDJc6uIrbjKK2tIThOpCijLIpciz8GQhFNW8YFiV-jucHdrar0Lw9Oh1944vV6mevSAguScw54NWXrIFsHHGGx1AgjosU_916ce-9THPgfo9gA5a-0JWCSECsHZL_NOclM</recordid><startdate>201907</startdate><enddate>201907</enddate><creator>Oustry, Antoine</creator><creator>Tacchi, Matteo</creator><creator>Henrion, Didier</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0001-7953-263X</orcidid><orcidid>https://orcid.org/0000-0001-6735-7715</orcidid><orcidid>https://orcid.org/0000-0002-5517-5989</orcidid></search><sort><creationdate>201907</creationdate><title>Inner Approximations of the Maximal Positively Invariant Set for Polynomial Dynamical Systems</title><author>Oustry, Antoine ; Tacchi, Matteo ; Henrion, Didier</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c345t-36d234733fdc9350ce56007bbe91ef49bfea1b2769c0ddcb65bb0a17423f433f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>algebraic/geometric methods</topic><topic>Companies</topic><topic>computational methods</topic><topic>Computer Science</topic><topic>Convergence</topic><topic>Current measurement</topic><topic>Linear matrix inequalities</topic><topic>LMIs</topic><topic>Mathematics</topic><topic>Optimization and Control</topic><topic>Stability of nonlinear systems</topic><topic>Systems and Control</topic><topic>Time measurement</topic><topic>Trajectory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Oustry, Antoine</creatorcontrib><creatorcontrib>Tacchi, Matteo</creatorcontrib><creatorcontrib>Henrion, Didier</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>IEEE control systems letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Oustry, Antoine</au><au>Tacchi, Matteo</au><au>Henrion, Didier</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Inner Approximations of the Maximal Positively Invariant Set for Polynomial Dynamical Systems</atitle><jtitle>IEEE control systems letters</jtitle><stitle>LCSYS</stitle><date>2019-07</date><risdate>2019</risdate><volume>3</volume><issue>3</issue><spage>733</spage><epage>738</epage><pages>733-738</pages><issn>2475-1456</issn><eissn>2475-1456</eissn><coden>ICSLBO</coden><abstract>The Lasserre or moment-sum-of-square hierarchy of linear matrix inequality relaxations is used to compute inner approximations of the maximal positively invariant set for continuous-time dynamical systems with polynomial vector fields. Convergence in volume of the hierarchy is proved under a technical growth condition on the average exit time of trajectories. Our contribution is to deal with inner approximations in infinite time, while former work with volume convergence guarantees proposed either outer approximations of the maximal positively invariant set or inner approximations of the region of attraction in finite time.</abstract><pub>IEEE</pub><doi>10.1109/LCSYS.2019.2916256</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0001-7953-263X</orcidid><orcidid>https://orcid.org/0000-0001-6735-7715</orcidid><orcidid>https://orcid.org/0000-0002-5517-5989</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2475-1456
ispartof IEEE control systems letters, 2019-07, Vol.3 (3), p.733-738
issn 2475-1456
2475-1456
language eng
recordid cdi_ieee_primary_8712554
source IEEE Electronic Library (IEL)
subjects algebraic/geometric methods
Companies
computational methods
Computer Science
Convergence
Current measurement
Linear matrix inequalities
LMIs
Mathematics
Optimization and Control
Stability of nonlinear systems
Systems and Control
Time measurement
Trajectory
title Inner Approximations of the Maximal Positively Invariant Set for Polynomial Dynamical Systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T08%3A09%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Inner%20Approximations%20of%20the%20Maximal%20Positively%20Invariant%20Set%20for%20Polynomial%20Dynamical%20Systems&rft.jtitle=IEEE%20control%20systems%20letters&rft.au=Oustry,%20Antoine&rft.date=2019-07&rft.volume=3&rft.issue=3&rft.spage=733&rft.epage=738&rft.pages=733-738&rft.issn=2475-1456&rft.eissn=2475-1456&rft.coden=ICSLBO&rft_id=info:doi/10.1109/LCSYS.2019.2916256&rft_dat=%3Chal_RIE%3Eoai_HAL_hal_02064440v3%3C/hal_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=8712554&rfr_iscdi=true