Inner Approximations of the Maximal Positively Invariant Set for Polynomial Dynamical Systems
The Lasserre or moment-sum-of-square hierarchy of linear matrix inequality relaxations is used to compute inner approximations of the maximal positively invariant set for continuous-time dynamical systems with polynomial vector fields. Convergence in volume of the hierarchy is proved under a technic...
Gespeichert in:
Veröffentlicht in: | IEEE control systems letters 2019-07, Vol.3 (3), p.733-738 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 738 |
---|---|
container_issue | 3 |
container_start_page | 733 |
container_title | IEEE control systems letters |
container_volume | 3 |
creator | Oustry, Antoine Tacchi, Matteo Henrion, Didier |
description | The Lasserre or moment-sum-of-square hierarchy of linear matrix inequality relaxations is used to compute inner approximations of the maximal positively invariant set for continuous-time dynamical systems with polynomial vector fields. Convergence in volume of the hierarchy is proved under a technical growth condition on the average exit time of trajectories. Our contribution is to deal with inner approximations in infinite time, while former work with volume convergence guarantees proposed either outer approximations of the maximal positively invariant set or inner approximations of the region of attraction in finite time. |
doi_str_mv | 10.1109/LCSYS.2019.2916256 |
format | Article |
fullrecord | <record><control><sourceid>hal_RIE</sourceid><recordid>TN_cdi_ieee_primary_8712554</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8712554</ieee_id><sourcerecordid>oai_HAL_hal_02064440v3</sourcerecordid><originalsourceid>FETCH-LOGICAL-c345t-36d234733fdc9350ce56007bbe91ef49bfea1b2769c0ddcb65bb0a17423f433f3</originalsourceid><addsrcrecordid>eNpNkEtLw0AUhQdRsGj_gG5m66L1zjOdZamPFiIK0YULGSbJhI4kmTITivn3JrYUV_dw7vkul4PQDYE5IaDu01X2mc0pEDWnikgq5BmaUJ6IGeFCnv_Tl2ga4zcAkAVNgKoJ-tq0rQ14udsF_-Ma0znfRuwr3G0tfjGjVeM3H13n9rbu8abdm-BM2-HMdrjyYVjWfesbN-Qe-tY0rhhU1sfONvEaXVSmjnZ6nFfo4-nxfbWepa_Pm9UynRWMi27GZEkZTxirykIxAYUVEiDJc6uIrbjKK2tIThOpCijLIpciz8GQhFNW8YFiV-jucHdrar0Lw9Oh1944vV6mevSAguScw54NWXrIFsHHGGx1AgjosU_916ce-9THPgfo9gA5a-0JWCSECsHZL_NOclM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Inner Approximations of the Maximal Positively Invariant Set for Polynomial Dynamical Systems</title><source>IEEE Electronic Library (IEL)</source><creator>Oustry, Antoine ; Tacchi, Matteo ; Henrion, Didier</creator><creatorcontrib>Oustry, Antoine ; Tacchi, Matteo ; Henrion, Didier</creatorcontrib><description>The Lasserre or moment-sum-of-square hierarchy of linear matrix inequality relaxations is used to compute inner approximations of the maximal positively invariant set for continuous-time dynamical systems with polynomial vector fields. Convergence in volume of the hierarchy is proved under a technical growth condition on the average exit time of trajectories. Our contribution is to deal with inner approximations in infinite time, while former work with volume convergence guarantees proposed either outer approximations of the maximal positively invariant set or inner approximations of the region of attraction in finite time.</description><identifier>ISSN: 2475-1456</identifier><identifier>EISSN: 2475-1456</identifier><identifier>DOI: 10.1109/LCSYS.2019.2916256</identifier><identifier>CODEN: ICSLBO</identifier><language>eng</language><publisher>IEEE</publisher><subject>algebraic/geometric methods ; Companies ; computational methods ; Computer Science ; Convergence ; Current measurement ; Linear matrix inequalities ; LMIs ; Mathematics ; Optimization and Control ; Stability of nonlinear systems ; Systems and Control ; Time measurement ; Trajectory</subject><ispartof>IEEE control systems letters, 2019-07, Vol.3 (3), p.733-738</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c345t-36d234733fdc9350ce56007bbe91ef49bfea1b2769c0ddcb65bb0a17423f433f3</citedby><cites>FETCH-LOGICAL-c345t-36d234733fdc9350ce56007bbe91ef49bfea1b2769c0ddcb65bb0a17423f433f3</cites><orcidid>0000-0001-7953-263X ; 0000-0001-6735-7715 ; 0000-0002-5517-5989</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8712554$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,777,781,793,882,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8712554$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://hal.science/hal-02064440$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Oustry, Antoine</creatorcontrib><creatorcontrib>Tacchi, Matteo</creatorcontrib><creatorcontrib>Henrion, Didier</creatorcontrib><title>Inner Approximations of the Maximal Positively Invariant Set for Polynomial Dynamical Systems</title><title>IEEE control systems letters</title><addtitle>LCSYS</addtitle><description>The Lasserre or moment-sum-of-square hierarchy of linear matrix inequality relaxations is used to compute inner approximations of the maximal positively invariant set for continuous-time dynamical systems with polynomial vector fields. Convergence in volume of the hierarchy is proved under a technical growth condition on the average exit time of trajectories. Our contribution is to deal with inner approximations in infinite time, while former work with volume convergence guarantees proposed either outer approximations of the maximal positively invariant set or inner approximations of the region of attraction in finite time.</description><subject>algebraic/geometric methods</subject><subject>Companies</subject><subject>computational methods</subject><subject>Computer Science</subject><subject>Convergence</subject><subject>Current measurement</subject><subject>Linear matrix inequalities</subject><subject>LMIs</subject><subject>Mathematics</subject><subject>Optimization and Control</subject><subject>Stability of nonlinear systems</subject><subject>Systems and Control</subject><subject>Time measurement</subject><subject>Trajectory</subject><issn>2475-1456</issn><issn>2475-1456</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkEtLw0AUhQdRsGj_gG5m66L1zjOdZamPFiIK0YULGSbJhI4kmTITivn3JrYUV_dw7vkul4PQDYE5IaDu01X2mc0pEDWnikgq5BmaUJ6IGeFCnv_Tl2ga4zcAkAVNgKoJ-tq0rQ14udsF_-Ma0znfRuwr3G0tfjGjVeM3H13n9rbu8abdm-BM2-HMdrjyYVjWfesbN-Qe-tY0rhhU1sfONvEaXVSmjnZ6nFfo4-nxfbWepa_Pm9UynRWMi27GZEkZTxirykIxAYUVEiDJc6uIrbjKK2tIThOpCijLIpciz8GQhFNW8YFiV-jucHdrar0Lw9Oh1944vV6mevSAguScw54NWXrIFsHHGGx1AgjosU_916ce-9THPgfo9gA5a-0JWCSECsHZL_NOclM</recordid><startdate>201907</startdate><enddate>201907</enddate><creator>Oustry, Antoine</creator><creator>Tacchi, Matteo</creator><creator>Henrion, Didier</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0001-7953-263X</orcidid><orcidid>https://orcid.org/0000-0001-6735-7715</orcidid><orcidid>https://orcid.org/0000-0002-5517-5989</orcidid></search><sort><creationdate>201907</creationdate><title>Inner Approximations of the Maximal Positively Invariant Set for Polynomial Dynamical Systems</title><author>Oustry, Antoine ; Tacchi, Matteo ; Henrion, Didier</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c345t-36d234733fdc9350ce56007bbe91ef49bfea1b2769c0ddcb65bb0a17423f433f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>algebraic/geometric methods</topic><topic>Companies</topic><topic>computational methods</topic><topic>Computer Science</topic><topic>Convergence</topic><topic>Current measurement</topic><topic>Linear matrix inequalities</topic><topic>LMIs</topic><topic>Mathematics</topic><topic>Optimization and Control</topic><topic>Stability of nonlinear systems</topic><topic>Systems and Control</topic><topic>Time measurement</topic><topic>Trajectory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Oustry, Antoine</creatorcontrib><creatorcontrib>Tacchi, Matteo</creatorcontrib><creatorcontrib>Henrion, Didier</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>IEEE control systems letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Oustry, Antoine</au><au>Tacchi, Matteo</au><au>Henrion, Didier</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Inner Approximations of the Maximal Positively Invariant Set for Polynomial Dynamical Systems</atitle><jtitle>IEEE control systems letters</jtitle><stitle>LCSYS</stitle><date>2019-07</date><risdate>2019</risdate><volume>3</volume><issue>3</issue><spage>733</spage><epage>738</epage><pages>733-738</pages><issn>2475-1456</issn><eissn>2475-1456</eissn><coden>ICSLBO</coden><abstract>The Lasserre or moment-sum-of-square hierarchy of linear matrix inequality relaxations is used to compute inner approximations of the maximal positively invariant set for continuous-time dynamical systems with polynomial vector fields. Convergence in volume of the hierarchy is proved under a technical growth condition on the average exit time of trajectories. Our contribution is to deal with inner approximations in infinite time, while former work with volume convergence guarantees proposed either outer approximations of the maximal positively invariant set or inner approximations of the region of attraction in finite time.</abstract><pub>IEEE</pub><doi>10.1109/LCSYS.2019.2916256</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0001-7953-263X</orcidid><orcidid>https://orcid.org/0000-0001-6735-7715</orcidid><orcidid>https://orcid.org/0000-0002-5517-5989</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2475-1456 |
ispartof | IEEE control systems letters, 2019-07, Vol.3 (3), p.733-738 |
issn | 2475-1456 2475-1456 |
language | eng |
recordid | cdi_ieee_primary_8712554 |
source | IEEE Electronic Library (IEL) |
subjects | algebraic/geometric methods Companies computational methods Computer Science Convergence Current measurement Linear matrix inequalities LMIs Mathematics Optimization and Control Stability of nonlinear systems Systems and Control Time measurement Trajectory |
title | Inner Approximations of the Maximal Positively Invariant Set for Polynomial Dynamical Systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T08%3A09%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Inner%20Approximations%20of%20the%20Maximal%20Positively%20Invariant%20Set%20for%20Polynomial%20Dynamical%20Systems&rft.jtitle=IEEE%20control%20systems%20letters&rft.au=Oustry,%20Antoine&rft.date=2019-07&rft.volume=3&rft.issue=3&rft.spage=733&rft.epage=738&rft.pages=733-738&rft.issn=2475-1456&rft.eissn=2475-1456&rft.coden=ICSLBO&rft_id=info:doi/10.1109/LCSYS.2019.2916256&rft_dat=%3Chal_RIE%3Eoai_HAL_hal_02064440v3%3C/hal_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=8712554&rfr_iscdi=true |