Inner Approximations of the Maximal Positively Invariant Set for Polynomial Dynamical Systems

The Lasserre or moment-sum-of-square hierarchy of linear matrix inequality relaxations is used to compute inner approximations of the maximal positively invariant set for continuous-time dynamical systems with polynomial vector fields. Convergence in volume of the hierarchy is proved under a technic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE control systems letters 2019-07, Vol.3 (3), p.733-738
Hauptverfasser: Oustry, Antoine, Tacchi, Matteo, Henrion, Didier
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The Lasserre or moment-sum-of-square hierarchy of linear matrix inequality relaxations is used to compute inner approximations of the maximal positively invariant set for continuous-time dynamical systems with polynomial vector fields. Convergence in volume of the hierarchy is proved under a technical growth condition on the average exit time of trajectories. Our contribution is to deal with inner approximations in infinite time, while former work with volume convergence guarantees proposed either outer approximations of the maximal positively invariant set or inner approximations of the region of attraction in finite time.
ISSN:2475-1456
2475-1456
DOI:10.1109/LCSYS.2019.2916256