Inner Approximations of the Maximal Positively Invariant Set for Polynomial Dynamical Systems
The Lasserre or moment-sum-of-square hierarchy of linear matrix inequality relaxations is used to compute inner approximations of the maximal positively invariant set for continuous-time dynamical systems with polynomial vector fields. Convergence in volume of the hierarchy is proved under a technic...
Gespeichert in:
Veröffentlicht in: | IEEE control systems letters 2019-07, Vol.3 (3), p.733-738 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The Lasserre or moment-sum-of-square hierarchy of linear matrix inequality relaxations is used to compute inner approximations of the maximal positively invariant set for continuous-time dynamical systems with polynomial vector fields. Convergence in volume of the hierarchy is proved under a technical growth condition on the average exit time of trajectories. Our contribution is to deal with inner approximations in infinite time, while former work with volume convergence guarantees proposed either outer approximations of the maximal positively invariant set or inner approximations of the region of attraction in finite time. |
---|---|
ISSN: | 2475-1456 2475-1456 |
DOI: | 10.1109/LCSYS.2019.2916256 |