Real-Time Adaptive Parameter Estimation for a Polymer Electrolyte Membrane Fuel Cell

In this paper, we propose real-time adaptive parameter estimation methods for a polymer electrolyte membrane fuel cell (PEMFC) to facilitate the modeling and the subsequent control synthesis. Specifically, the electrochemical model of this fuel cell is in a nonlinearly parametric formulation. Hence,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on industrial informatics 2019-11, Vol.15 (11), p.6048-6057
Hauptverfasser: Xing, Yashan, Na, Jing, Costa-Castello, Ramon
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we propose real-time adaptive parameter estimation methods for a polymer electrolyte membrane fuel cell (PEMFC) to facilitate the modeling and the subsequent control synthesis. Specifically, the electrochemical model of this fuel cell is in a nonlinearly parametric formulation. Hence, most of existing parameter estimation techniques for PEMFC mainly rely on the optimization approaches, requiring heavy computational costs or even offline implementation. In comparison to those methods, real-time adaptive parameter estimation methods for nonlinearly parametric system are developed in this paper. First, the nonlinearly parametric function is linearized by using the Taylor series expansion. Then, adaptive parameter estimation methods are proposed for estimating the constant or time-varying parameters of PEMFC. Different from the well-recognized adaptive parameter estimation methods, the proposed adaptive laws are driven by the extracted estimation errors, so that exponential convergence of the parameter estimation error can be guaranteed, without using any predictors or observers. Finally, practical experiments in a H-100 PEMFC system are conducted, which illustrate satisfactory performances of the presented parameter estimation methods under different operation scenarios.
ISSN:1551-3203
1941-0050
DOI:10.1109/TII.2019.2915569